首页> 外文OA文献 >Jointly Learning to Construct and Control Agents using Deep Reinforcement Learning
【2h】

Jointly Learning to Construct and Control Agents using Deep Reinforcement Learning

机译:使用深增强学习共同学习构建和控制代理商

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The physical design of a robot and the policy that controls its motion areinherently coupled. However, existing approaches largely ignore this coupling,instead choosing to alternate between separate design and control phases, whichrequires expert intuition throughout and risks convergence to suboptimaldesigns. In this work, we propose a method that jointly optimizes over thephysical design of a robot and the corresponding control policy in a model-freefashion, without any need for expert supervision. Given an arbitrary robotmorphology, our method maintains a distribution over the design parameters anduses reinforcement learning to train a neural network controller. Throughouttraining, we refine the robot distribution to maximize the expected reward.This results in an assignment to the robot parameters and neural network policythat are jointly optimal. We evaluate our approach in the context of leggedlocomotion, and demonstrate that it discovers novel robot designs and walkinggaits for several different morphologies, achieving performance comparable toor better than that of hand-crafted designs.
机译:机器人的物理设计和控制其运动的政策不正常耦合。但是,现有方法在很大程度上忽略了这种耦合,而是选择在单独的设计和控制阶段之间交替,这在整个方面进行了专家直觉并对子OptimalDesign的融合。在这项工作中,我们提出了一种方法,该方法在无需专家监督的情况下共同优化了机器人的机器人和相应的控制政策的方法。鉴于任意机器流,我们的方法在设计参数上维持分布,并且增强学习训练神经网络控制器。遍及筛选,我们优化机器人分布,以最大化预期的奖励。这导致对机器人参数的分配,神经网络Polyine是联合最佳的。我们在LeggedLocoCotion的背景下评估我们的方法,并证明它发现了几种不同形态的新型机器人设计和Hadefackgaits,比手工制作的设计更好地实现了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号