首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Joint Traffic Control and Multi-Channel Reassignment for Core Backbone Network in SDN-IoT: A Multi-Agent Deep Reinforcement Learning Approach
【24h】

Joint Traffic Control and Multi-Channel Reassignment for Core Backbone Network in SDN-IoT: A Multi-Agent Deep Reinforcement Learning Approach

机译:SDN-IOT中的核心骨干网络联合交通管制和多通道重新分配:多智能经纪深度加强学习方法

获取原文
获取原文并翻译 | 示例

摘要

Channel reassignment is to assign again on the assigned channel resources in order to use the channel resources more efficiently. Channel reassignment in the Software-Defined Networking (SDN) based Internet of Things (SDN-IoT) is a promising paradigm to improve the communication performance of the network, since it allows software-defined routers (SDRs) with the help of SDN controller to appropriately schedule the traffic loads to meet the better transaction of corresponding channels in one link. However, the existing channel reassignment works have many limitations. In this paper, we develop a joint multi-channel reassignment and traffic control framework for the core backbone network in SDN-IoT. Comparing to classic performance metrics, we design a more comprehensive objection function to maximize the throughput and to minimize packet loss rate and the time delay by scheduling the appropriate traffic loads to corresponding channels in one link. We develop a Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based traffic control and multi-channel reassignment (TCCA-MADDPG) algorithm to optimize the objection function to achieve traffic control and channel reassignment. To tackle the dynamics and complexity of the core backbone network, we use the traffic prediction result as the part of the channel state information. In order to make better use of the time continuity of the channel state, we add an LSTM layer to the neural network in the experiment to capture the timing information of the channel. Simulation results show that the proposed algorithm converges faster and outperform existing methods.
机译:信道重新分配是在分配的通道资源中再次分配,以便更有效地使用频道资源。基于软件定义的网络(SDN)的事物(SDN-IOT)中的信道重新分配是提高网络通信性能的有希望的范例,因为它允许在SDN控制器的帮助下允许软件定义的路由器(SDR)适当安排流量负载以在一个链接中满足相应通道的更好事务。但是,现有的频道重新分配工作有许多限制。在本文中,我们为SDN-IOT中的核心骨干网络开发了一个联合多通道重新分配和交通控制框架。与经典性能指标相比,我们设计了一种更全面的异议功能,可以最大化吞吐量,并通过将适当的流量负载安排到一个链路中的相应通道来最小化丢包率和时间延迟。我们开发了一个多代理深度确定性政策梯度(MADDPG)的流量控制和多通道重新分配(TCCA-MADDPG)算法,以优化异议功能以实现流量控制和信道重新分配。为了解决核心骨干网的动态和复杂性,我们使用流量预测结果作为信道状态信息的一部分。为了更好地利用信道状态的时间连续性,我们将LSTM层添加到实验中的神经网络中以捕获信道的定时信息。仿真结果表明,该算法会收敛更快,更优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号