机译:SDN-IOT中的核心骨干网络联合交通管制和多通道重新分配:多智能经纪深度加强学习方法
Huazhong Univ Sci & Technol Sch Elect Informat & Commun Engn Wuhan 430074 Peoples R China;
Huazhong Univ Sci & Technol Hubei Engn Res Ctr Big Data Secur Sch Cyber Sci & Engn Wuhan 430074 Peoples R China;
Duke Univ Elect & Comp Engn Dept Durham NC 27708 USA;
Duke Univ Elect & Comp Engn Dept Durham NC 27708 USA;
Huazhong Univ Sci & Technol Hubei Engn Res Ctr Big Data Secur Sch Cyber Sci & Engn Wuhan 430074 Peoples R China;
Dalian Univ Technol Sch Software Dalian 116024 Peoples R China;
Huazhong Univ Sci & Technol Hubei Engn Res Ctr Big Data Secur Sch Cyber Sci & Engn Wuhan 430074 Peoples R China;
Huazhong Univ Sci & Technol Sch Comp Sci & Technol Serv Comp Technol & Syst Lab Cluster & Grid Comp Lab Wuhan 430074 Peoples R China;
Reinforcement learning; Throughput; Channel allocation; Optimization; Packet loss; Deep learning; Deep Reinforcement Learning (DRL); internet of things (IoT); internet of things based on software; defined network (SDN-IoT); multi-channel reassignment; software; defined network (SDN); traffic control;
机译:车辆网络中城市交通灯控制多功能深度增强学习
机译:通过多功能深度加强学习方法,在软件定义物联网中的城市交通控制
机译:网络范围的交通信号控制优化使用多功能深度增强学习
机译:REGIGHT-WCTM:在逼真的交通仿真中的交通灯控制多功能加固学习方法
机译:多模式自适应交通信号控制的深增强学习方法
机译:异构WLAN中的按需信道绑定:多代理深度强化学习方法
机译:网络范围的交通信号控制优化使用多功能深度增强学习
机译:多智能体强化学习与自适应神经网络