首页> 外文OA文献 >Underactuated control for an autonomous underwater vehicle with four thrusters
【2h】

Underactuated control for an autonomous underwater vehicle with four thrusters

机译:具有四个推进器的自动水下航行器的欠驱动控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The control of Autonomous Underwater Vehicles (AIJVs) is a very challenging task because the model of AUV system has nonlinearities and time-variance,and there are uncertain external disturbances and difficulties in hydrodynamic modeling.The problem of AUV control continues to pose considerable challenges to system designers,especially when the vehicles are underactuated (defined as systems with more degrees-of-freedom(DOFs) than the number of inputs) and exhibit large parameter uncertainties.Hence the dynamical equations of the AUV exhibit so-called second-order nonholonomic constraints,i.e., non-integrable conditions are imposed on the acceleration in one or more DOFs becauseudthe AUV lacks capability to command instantaneous accelerations in these directions of the configuration space.Such a nonholonomic system cannot be stabilized by the usual smooth,time-invariant,state feedback control algorithms.From a conceptual standpoint,the problem is quite rich and the tools used to solve it must necessarily be borrowed from solid nonlinear control theory.However,the interest in this type of problem goes well beyond the theoretical aspects because it is well rooted in practical applications that constitute the core of new and exciting underwater mission scenarios.The problem of steering an underactuated AUV to a point with a desired orientation has only recently received special attention in the literature and references therein.This task raises some challenging questions in system control theory because,in addition to being underactuated,the vehicle exhibits complex hydrodynamic effects that must necessarily be taken into account during the controller design phase.Therefore, researchers attempted to design a steering system for the AUV that would rely on its kinematic equations only.In this research, an X4-AUV is modelled as a slender, axisymmetric rigid body whose mass equals the mass of the fluid which it displaces;thus,the vehicle is neutrally buoyant.X4-AUV equipped with four thrusters has 6-DOFs in motion, falls in an underactuated system and also has nonholonomic features.Modelling of ATJV maneuverability first involved the mathematical computation of the rigid body's kinematics,in which roll-pitch-yaw angles in 6-DOFs kinematics are used.We also derive the dynamics model of an X4-AUV with four thrusters using a Lagrange approach, where the modelling includes the consideration of the effect of added mass and inertia.We present a point-to-point control strategy for stabilizing control of an X4-AUV which is not linearly controllable.The goal in point-to-point control is to bring a system from any initial state of the system to a desired state of the system.The construction of stabilizing control for this system is often further complicated by the presence of a drift term in the differential equation describing it dynamically.udTwo different controllers are developed to stabilize the system.The first stabilization strategy is based on the Lyapunov stability theory.The design of the controller is separated into two parts: one is the rotational dynamics-related part and the other is the translationaluddynamics-related one.A controller for the translational subsystem stabilizes one position out of x-, y-, and z-coordinates, whereas.a controller for the rotational subsystems generates the desired roll, pitch and yaw angles. Thus,the rotational controller stabilizes all the attitudes of the X4-ALJV at a desired (x-, y- or z-) position of the vehicle.The stability of the corresponding closed-loop system is proved by imposing a suitable Lyapunov function and then using LaSalles's invariance principle.The second stabilization strategy is based on a discontinuous control law,involving the a-process for exponential stabilization of nonholonomic system.This technique is applied to the system by two different approaches.The first approach does not necessitate 11 any conversion of the system model into a chained form, and thus not rely on any special transformation techniques.The system is written in a control-affine form by applying a partial linearization technique and a dynamic controller based on Astolfi's discontinuous control is derived to stabilize all the states of the system to the desired equilibrium point exponentially.Motivated by the fact that the discontinuous dynamic-model without using a chained form transformation assures only a local stability (or controllability) of the dynamics based control system, instead of guaranteeing a global stability of the system, the conversion of system model into a second-order chained form is implemented in the second approach.The second-order chained form consisting of a dynamical model is obtained by separating the original dynamical model into three subsystems so as to use the standard canonical form with two inputs and three states second-order chained form.Here,two subsystems are subject to a second-order nonlinear model with two inputs and three states,and the other subsystem is subject to a linear second-order model with two inputs and two states. Then,the Astolfi's discontinuous control approach is applied for such second-order chained forms.The present method can only realize partially underactuated control, which controls five states out of six states by using four inputs.The derived results are specialized to an X4-AUV but,in principle,analogous results can be obtained for vehicles with similar dynamics. Some computer simulations are presented to demonstrate the effectiveness of our approach.
机译:水下机器人的控制是一项非常具有挑战性的任务,因为水下机器人系统的模型具有非线性和时变性,并且在流体动力学建模中存在不确定的外部干扰和困难。系统设计人员,尤其是车辆操作不足(定义为自由度(DOF)大于输入数量的系统)且参数不确定性较大时。因此,AUV的动力学方程具有所谓的二阶非完整约束,即一个或多个自由度中的加速度受到不可积分的条件,因为 AUV缺乏在配置空间的这些方向上命令瞬时加速度的能力。这样的非完整系统无法通过通常的平稳,时间稳定的方法来稳定。不变的状态反馈控制算法。从概念上讲,该问题非常丰富,并且使用了解决该问题的工具它必须从固体非线性控制理论中借用。但是,对这类问题的兴趣远远超出了理论方面,因为它扎根于构成新的令人兴奋的水下任务场景的核心的实际应用中。欠驱动的AUV到具有所需方向的点直到最近才在文献和参考文献中受到特别关注。此任务在系统控制理论中提出了一些具有挑战性的问题,因为除欠驱动之外,该车辆还表现出复杂的流体动力效应,必须因此,研究人员试图设计一种仅依赖于运动学方程的AUV转向系统。在本研究中,X4-AUV被建模为细长的轴对称刚体,其质量等于所置换的流体的质量;因此,车辆处于中性浮力。X4-AUV装备带有四个推进器的d具有6自由度运动,属于欠驱动系统,并且还具有非完整特性.ATJV可操纵性的建模首先涉及刚体运动学的数学计算,其中6自由度运动学中的俯仰-偏航角我们还使用拉格朗日方法推导了具有四个推进器的X4-AUV的动力学模型,其中的建模考虑了附加质量和惯性的影响。我们提出了稳定控制的点对点控制策略X4-AUV不能线性控制。点对点控制的目标是使系统从系统的任何初始状态变为系统的期望状态。通常,该系统的稳定控制构造 ud开发了两种不同的控制器来稳定系统。第一种稳定策略基于Lyapun ov稳定性理论。控制器的设计分为两部分:一个是与旋转动力学有关的部分,另一个是与平动 uddynamics有关的部分。平移子系统的控制器将一个位置稳定在x-,y之外-和z坐标,而用于旋转子系统的控制器会生成所需的侧倾角,俯仰角和偏航角。因此,旋转控制器将X4-ALJV的所有姿态稳定在车辆的所需位置(x,y或z)。通过施加适当的Lyapunov函数和第二种稳定策略基于不连续控制律,涉及非完整系统指数稳定的a过程。该技术通过两种不同的方法应用于系统,第一种方法不需要11将系统模型转换为链式形式,因此不依赖任何特殊的转换技术。通过应用部分线性化技术以仿射控制形式编写系统,并得出基于Astolfi不连续控制的动态控制器来稳定所有系统状态以指数形式达到所需的平衡点。受以下事实的启发:不使用链的不连续动力学模型rm转换仅确保基于动力学的控制系统的局部稳定性(或可控制性),而不是保证系统的全局稳定性,而是在第二种方法中将系统模型转换为二阶链接形式。通过将原始动力学模型分为三个子系统,以使用具有两个输入和三个状态的第二阶链接形式的标准规范形式,来获得由一个动力学模型组成的顺序链接形式。这里,两个子系统属于第二阶具有两个输入和三个状态的非线性模型,另一个子系统受具有两个输入和两个状态的线性二阶模型的约束。然后,将Astolfi的不连续控制方法应用于这种二阶链式形式。本方法只能实现部分欠驱动控制,该控制通过使用四个输入来控制六个状态中的五个状态。派生的结果专用于X4-AUV但是,原则上,对于具有相似动力学特性的车辆,可以得到类似的结果。提出了一些计算机仿真来证明我们方法的有效性。

著录项

  • 作者

    Zainah Md. Zain;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号