首页> 外文OA文献 >Evaluation of structured data from electronic health records to identify clinical classification criteria attributes for systemic lupus erythematosus
【2h】

Evaluation of structured data from electronic health records to identify clinical classification criteria attributes for systemic lupus erythematosus

机译:从电子健康记录的结构化数据评估识别全身狼疮红斑狼疮的临床分类标准属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective Our objective was to develop algorithms to identify lupus clinical classification criteria attributes using structured data found in the electronic health record (EHR) and determine whether they could be used to describe a cohort of people with lupus and discriminate them from a defined healthy control cohort.Methods We created gold standard lupus and healthy patient cohorts that were fully adjudicated for the American College of Rheumatology (ACR), Systemic Lupus International Collaborating Clinics (SLICC) and European League Against Rheumatism/ACR (EULAR/ACR) classification criteria and had matched EHR data. We implemented rule-based algorithms using structured data within the EHR system for each attribute of the three classification criteria. Individual criteria attribute and classification criteria algorithms as a whole were assessed over our combined cohorts and the overall performance of the algorithms was measured through sensitivity and specificity.Results Individual classification criteria attributes had a wide range of sensitivities, 7% (oral ulcers) to 97% (haematological disorders) and specificities, 56% (haematological disorders) to 98% (photosensitivity), but all could be identified in EHR data. In general, algorithms based on laboratory results performed better than those primarily based on diagnosis codes. All three classification criteria systems effectively distinguished members of our case and control cohorts, but the SLICC criteria-based algorithm had the highest overall performance (76% sensitivity, 99% specificity).Conclusions It is possible to characterise disease manifestations in people with lupus using classification criteria-based algorithms that assess structured EHR data. These algorithms may reduce chart review burden and are a foundation for identifying subpopulations of patients with lupus based on disease presentation to support precision medicine applications.
机译:目的我们的目标是使用电子健康记录(EHR)中发现的结构化数据来开发算法以识别卢布临床分类标准属性,并确定它们是否可用于描述狼疮的人群,并从规定的健康控制队列中区分它们。方法我们创造了金标准的狼疮和健康的患者群体,这些卢比和健康的患者队列完全裁决了美国风湿病学院(ACR),系统性狼疮国际合作诊所(SLICC)和欧洲联盟,反对风湿病/ ACR(欧洲/ ACR)分类标准并匹配EHR数据。我们在三个分类标准的每个属性中使用EHR系统内的结构化数据来实现基于规则的算法。通过敏感性和特异性来评估整体标准属性和整体分类标准算法。通过敏感性和特异性来测量算法的整体性能。细分的个别分类标准属性具有广泛的敏感性,7%(口腔溃疡)至97 %(血液学紊乱)和特异性,56%(血液学紊乱)至98%(光敏性),但所有这些都可以在EHR数据中鉴定。通常,基于实验室结果的算法比主要基于诊断代码更好。所有三种分类标准系统有效尊重我们的案例和控制队列的成员,但基于SLICC标准的算法具有最高的整体性能(76%的灵敏度,99%的特异性)。结论可以使用狼疮的人们表征患有狼疮的人们的疾病表现基于分类的基于标准的算法,用于评估结构化EHR数据。这些算法可以减少图表审查负担,并且是鉴定基于疾病介绍的狼疮患者患者的群体基础,以支持精密药物应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号