首页> 外文OA文献 >Some Applications of the (G′/G,1/G)-Expansion Method for Finding Exact Traveling Wave Solutions of Nonlinear Fractional Evolution Equations
【2h】

Some Applications of the (G′/G,1/G)-Expansion Method for Finding Exact Traveling Wave Solutions of Nonlinear Fractional Evolution Equations

机译:(G'/ G,1 / g) - 扩张方法的一些应用,用于查找非线性分数展开方程的精确行波解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the ( G ′ / G , 1 / G ) -expansion method is applied to acquire some new, exact solutions of certain interesting, nonlinear, fractional-order partial differential equations arising in mathematical physics. The considered equations comprise the time-fractional, (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation, and the space-time-fractional generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) system in the sense of the conformable fractional derivative. Applying traveling wave transformations to the equations, we obtain the corresponding ordinary differential equations in which each of them provides a system of nonlinear algebraic equations when the method is used. As a result, many analytical exact solutions obtained of these equations are expressed in terms of hyperbolic function solutions, trigonometric function solutions, and rational function solutions. The graphical representations of some obtained solutions are demonstrated to better understand their physical features, including bell-shaped solitary wave solutions, singular soliton solutions, solitary wave solutions of kink type, and so on. The method is very efficient, powerful, and reliable for solving the proposed equations and other nonlinear fractional partial differential equations with the aid of a symbolic software package.
机译:在本文中,(G'/ G,1 / G)施加-expansion方法以获取某些有趣,非线性,分数阶偏微分方程数学物理产生的一些新的,精确解。所考虑的方程包括所述时间分数,(2 + 1)维扩展的量子的Zakharov-Kuznetsov方程的,和空间 - 时间 - 分数广义广田-萨摩在适形的分数的感耦合Korteweg-德弗里斯(KDV)系统衍生物。施加行波变换到方程,我们得到对应的普通微分方程,其中它们中的每提供非线性代数方程的系统时使用的方法。其结果是,这些方程的获得许多分析精确解在双曲函数解,三角函数解,和有理函数的解决方案的术语表示。一些获得的解的图形表示显示出以更好地理解它们的物理特性,包括钟形孤立波解,奇异孤子解,扭结类型的孤立波解,等等。该方法是非常有效的,强大的,可靠的解决所提出的方程和其它非线性分数偏微分方程符号软件包的助剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号