首页> 外文OA文献 >Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium
【2h】

Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium

机译:线性粘弹性(组织样)介质中气泡的瑞利破裂后的非线性振荡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a variety of biomedical engineering applications, cavitation occurs in soft tissue, a viscoelastic medium. The present objective is to understand the basic physics of bubble dynamics in soft tissue. To gain insights into this problem, theoretical and numerical models are developed to study the Rayleigh collapse and subsequent oscillations of a gas bubble in a viscoelastic material. To account for liquid compressibility and thus accurately model large-amplitude oscillations, the Keller-Miksis equation for spherical bubble dynamics is used. The most basic linear viscoelastic model that includes stress relaxation, viscosity, and elasticity (Zener, or standard linear solid) is considered for soft tissue, thereby adding two ordinary differential equations for the stresses. The present study seeks to advance past studies on cavitation in tissue by determining the basic effects of relaxation and elasticity on the bubble dynamics for situations in which compressibility is important. Numerical solutions show a clear dependence of the oscillations on the viscoelastic properties and compressibility. The perturbation analysis (method of multiple scales) accurately predicts the bubble response given the relevant constraints and can thus be used to investigate the underlying physics. A third-order expansion of the radius is necessary to accurately represent the dynamics. Key quantities of interest such as the oscillation frequency and damping, minimum radius, and collapse time can be predicted theoretically. The damping does not always monotonically decrease with decreasing elasticity: there exists a finite non-zero elasticity for which the damping is minimum; this value falls within the range of reported tissue elasticities. Also, the oscillation period generally changes with time over the first few cycles due to the nonlinearity of the system, before reaching an equilibrium value. The analytical expressions for the key bubble dynamics quantities and insights gained from the analysis may prove valuable in the development and optimization of certain biomedical applications.
机译:在各种生物医学工程应用中,空化发生在软组织,粘弹性介质中。当前的目的是了解软组织中气泡动力学的基本物理学。为了深入了解此问题,开发了理论模型和数值模型来研究粘弹性材料中的瑞利崩塌和气泡的随后振荡。为了考虑液体的可压缩性,从而准确地模拟大振幅振动,使用了球形气泡动力学的Keller-Miksis方程。对于软组织,考虑了最基本的线性粘弹性模型,其中包括应力松弛,粘度和弹性(Zener或标准线性固体),从而为应力添加了两个常微分方程。本研究旨在通过确定松弛和弹性对可压缩性很重要的情况下气泡动力学的基本影响,来推进对组织中空化的过去研究。数值解表明振荡明显依赖于粘弹性和可压缩性。扰动分析(多种尺度的方法)在给定相关约束的情况下准确地预测了气泡响应,因此可用于研究基础物理学。半径的三阶扩展对于准确表示动力学是必要的。理论上可以预测出感兴趣的关键量,例如振荡频率和阻尼,最小半径和崩溃时间。阻尼并不总是随弹性的降低而单调降低:存在一个有限的非零弹性,其阻尼最小。该值在报道的组织弹性范围内。同样,在达到平衡值之前,由于系统的非线性,振荡周期通常在前几个周期内随时间变化。关键气泡动力学量的分析表达式和从分析中获得的见解可能在某些生物医学应用的开发和优化中被证明是有价值的。

著录项

  • 作者

    Hua Chengyun; Johnsen Eric;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号