首页> 外文OA文献 >The Comparison of Fusion Methods for HSRRSI Considering the Effectiveness of Land Cover (Features) Object Recognition Based on Deep Learning
【2h】

The Comparison of Fusion Methods for HSRRSI Considering the Effectiveness of Land Cover (Features) Object Recognition Based on Deep Learning

机译:考虑基于深度学习的土地覆盖(特征)对象识别有效性的HSRRSI融合方法比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The efficient and accurate application of deep learning in the remote sensing field largely depends on the pre-processing technology of remote sensing images. Particularly, image fusion is the essential way to achieve the complementarity of the panchromatic band and multispectral bands in high spatial resolution remote sensing images. In this paper, we not only pay attention to the visual effect of fused images, but also focus on the subsequent application effectiveness of information extraction and feature recognition based on fused images. Based on the WorldView-3 images of Tongzhou District of Beijing, we apply the fusion results to conduct the experiments of object recognition of typical urban features based on deep learning. Furthermore, we perform a quantitative analysis for the existing pixel-based mainstream fusion methods of IHS (Intensity-Hue Saturation), PCS (Principal Component Substitution), GS (Gram Schmidt), ELS (Ehlers), HPF (High-Pass Filtering), and HCS (Hyper spherical Color Space) from the perspectives of spectrum, geometric features, and recognition accuracy. The results show that there are apparent differences in visual effect and quantitative index among different fusion methods, and the PCS fusion method has the most satisfying comprehensive effectiveness in the object recognition of land cover (features) based on deep learning.
机译:遥感领域深度学习的高效和准确应用主要取决于遥感图像的预处理技术。特别地,图像融合是实现高空间分辨率遥感图像中的全形频带和多光谱频段的基本方法。在本文中,我们不仅要注意融合图像的视觉效果,而且还专注于基于融合图像的信息提取和特征识别的随后应用效果。基于北京通州区的世界观-3图像,我们应用融合结果,以基于深度学习的典型城市特征对象识别实验。此外,我们对IHS的现有像素的主流融合方法进行定量分析(强度 - 色调饱和度),PC(主成分替换),GS(GRAM SCHMIDT),ELS(EHLERS),HPF(高通滤波)和频谱,几何特征和识别准确性的角度来看HCS(超球形颜色空间)。结果表明,不同融合方法之间的视觉效果和定量指数存在明显差异,并且PCS融合方法基于深度学习的土地覆盖(特征)的对象识别最满意的综合效能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号