首页> 外文OA文献 >A finite difference method with non-uniform timesteps for fractional diffusion equations
【2h】

A finite difference method with non-uniform timesteps for fractional diffusion equations

机译:具有用于分数扩散方程的非均匀时间步骤的有限差分方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An implicit finite difference method with non-uniform timesteps for solvingthe fractional diffusion equation in the Caputo form is proposed. The methodallows one to build adaptive methods where the size of the timesteps isadjusted to the behaviour of the solution in order to keep the numerical errorssmall without the penalty of a huge computational cost. The method isunconditionally stable and convergent. In fact, it is shown that consistencyand stability implies convergence for a rather general class of fractionalfinite difference methods to which the present method belongs. The hugecomputational advantage of adaptive methods against fixed step methods forfractional diffusion equations is illustrated by solving the problem of thedispersion of a flux of subdiffusive particles stemming from a point source.
机译:提出了一种用于解决Caputo形式中的分数扩散方程的非均匀时间步骤的隐含有限差分方法。该方法可以构建一个构建自适应方法,其中时间的大小被视为解决方案的行为,以便在没有巨额计算成本的情况下保持数值误差。该方法不稳定稳定和收敛。实际上,结果表明,一致的和稳定性意味着本方法所属的相当一般的分数差异方法的收敛。通过求解从点源源的诸多粒子的助焊剂的助焊剂的透明的问题来说明自适应方法对固定步骤方法进行自适应方法的挂起的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号