首页> 外文OA文献 >An Improved Robust Principal Component Analysis Model for Anomalies Detection of Subway Passenger Flow
【2h】

An Improved Robust Principal Component Analysis Model for Anomalies Detection of Subway Passenger Flow

机译:地铁客流异常检测改进的鲁棒主成分分析模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Subway is an important transportation means for residents, since it is always on schedule. However, some temporal management policies or unpredicted events may change passenger flow and then affect passengers requirement for punctuality. Thus, detecting anomaly event, mining its propagation law, and revealing its potential impact are important and helpful for improving management strategy; e.g., subway emergency management can predict flow change under the condition of knowing specific policy and estimate traffic impact brought by some big events such as vocal concerts and ball games. In this paper, we propose a novel anomalies detection method of subway passenger flow. In this method, an improved robust principal component analysis model is presented to detect anomalies; then ST-DBSCAN algorithm is used to group the station-level anomaly data on space-time dimensions to reveal the propagation law and potential impact of different anomaly events. The real flow data of Beijing subway are used for experiments. The experimental results show that the proposed method is effective for detecting anomalies of subway passenger flow in practices.
机译:地铁是居民的重要交通工具,因为它始终按时。但是,一些时间管理政策或不适当的事件可能会改变客运流程,然后影响乘客对准时的要求。因此,检测异常事件,挖掘其传播法,并揭示其潜在影响对改善管理战略来说是重要的,有助于;例如,地铁应急管理可以在知道特定政策的条件下预测流动变化,并通过一些大事如声乐演唱会和球比赛所带来的估计交通影响。在本文中,我们提出了一种新颖的地铁客流的异常检测方法。在该方法中,提出了一种改进的鲁棒主成分分析模型来检测异常;然后,ST-DBSCAN算法用于将站级异常数据分组在时空维度上,以揭示不同异常事件的传播法和潜在影响。北京地铁的实际流动数据用于实验。实验结果表明,该方法对探测道路客运中的异常是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号