首页> 外文OA文献 >Improved principal component analysis for anomaly detection: Application to an emergency department
【2h】

Improved principal component analysis for anomaly detection: Application to an emergency department

机译:改进异常检测的主成分分析:对急诊部门的申请

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monitoring of production systems, such as those in hospitals, is primordial for ensuring the best management and maintenance desired product quality. Detection of emergent abnormalities allows preemptive actions that can prevent more serious consequences. Principal component analysis (PCA)-based anomaly-detection approach has been used successfully for monitoring systems with highly correlated variables. However, conventional PCA-based detection indices, such as the Hotelling’s T2T2 and the Q statistics, are ill suited to detect small abnormalities because they use only information from the most recent observations. Other multivariate statistical metrics, such as the multivariate cumulative sum (MCUSUM) control scheme, are more suitable for detection small anomalies. In this paper, a generic anomaly detection scheme based on PCA is proposed to monitor demands to an emergency department. In such a framework, the MCUSUM control chart is applied to the uncorrelated residuals obtained from the PCA model. The proposed PCA-based MCUSUM anomaly detection strategy is successfully applied to the practical data collected from the database of the pediatric emergency department in the Lille Regional Hospital Centre, France. The detection results evidence that the proposed method is more effective than the conventional PCA-based anomaly-detection methods.
机译:监控生产系统(如医院)的原始原始,用于确保最佳管理和维护所需的产品质量。突出异常的检测允许抢先行动,以防止更严重的后果。基于主成分分析(PCA)基础的异常检测方法已成功用于监测具有高相关变量的系统。然而,基于传统的基于PCA的检测指标(例如Hotelling的T2T2和Q统计)都很适合检测到少量异常,因为它们仅使用来自最近观察的信息。其他多变量统计指标,例如多变量累积和(MCUSUM)控制方案,更适合于检测小异常。本文提出了一种基于PCA的通用异常检测方案,以监测对急诊部门的需求。在这样的框架中,MCUSUM控制图应用于从PCA模型获得的不相关的残差。建议的基于PCA的MCUSUM异常检测策略成功应用于法国里尔地区医院中心儿科急诊部门数据库所收集的实际数据。检测结果证明该方法比传统的基于PCA的异常检测方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号