首页> 外文期刊>Journal of network and computer applications >Network anomaly detection using IP flows with Principal Component Analysis and Ant Colony Optimization
【24h】

Network anomaly detection using IP flows with Principal Component Analysis and Ant Colony Optimization

机译:使用IP流进行主成分分析和蚁群优化的网络异常检测

获取原文
获取原文并翻译 | 示例

摘要

It is remarkable how proactive network management is in such demand nowadays, since networks are growing in size and complexity and Information Technology services cannot be stopped. In this manner, it is necessary to use an approach which proactively identifies traffic behavior patterns which may harm the network's normal operations. Aiming an automated management to detect and prevent potential problems, we present and compare two novel anomaly detection mechanisms based on statistical procedure Principal Component Analysis and the Ant Colony Optimization metaheuristic. These methods generate a traffic profile, called Digital Signature of Network Segment using Flow analysis (DSNSF), which is adopted as normal network behavior. Then, this signature is compared with the real network traffic by using a modification of the Dynamic Time Warping metric in order to recognize anomalous events. Thus, a seven-dimensional analysis of IP flows is performed, allowing the characterization of bits, packets and flows traffic transmitted per second, and the extraction of descriptive flow attributes, like source IP address, destination IP address, source TCP/UDP port and destination TCP/UDP port. The systems were evaluated using a real network environment and showed promising results. Moreover, the correspondence between true-positive and false-positive rates demonstrates that the systems are able to enhance the detection of anomalous behavior by maintaining a satisfactory false-alarm rate. (C) 2016 Elsevier Ltd. All rights reserved.
机译:如今,由于网络的规模和复杂性不断增长,并且信息技术服务无法停止,因此,对这种主动式网络管理的需求如此惊人。以这种方式,有必要使用一种方法来主动识别可能危害网络正常运行的流量行为模式。为了检测和预防潜在问题的自动化管理,我们提出并比较了基于统计过程主成分分析和蚁群优化元启发式的两种新颖的异常检测机制。这些方法使用流量分析(DSNSF)生成一个流量配置文件,称为“网段数字签名”,该配置文件被用作正常的网络行为。然后,通过使用动态时间规整度量的修改将此签名与实际网络流量进行比较,以识别异常事件。因此,对IP流进行了七维分析,从而可以表征每秒传输的比特,数据包和流流量,并提取描述性流属性,例如源IP地址,目标IP地址,源TCP / UDP端口和目标TCP / UDP端口。该系统使用真实的网络环境进行了评估,并显示出令人鼓舞的结果。此外,真假率与假阳性率之间的对应关系表明,该系统能够通过维持令人满意的假警报率来增强对异常行为的检测。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号