首页> 外文期刊>Journal of interconnection networks >DETECTION AND IDENTIFICATION OF ANOMALIES IN WIRELESS MESH NETWORKS USING PRINCIPAL COMPONENT ANALYSIS (PCA)
【24h】

DETECTION AND IDENTIFICATION OF ANOMALIES IN WIRELESS MESH NETWORKS USING PRINCIPAL COMPONENT ANALYSIS (PCA)

机译:基于主成分分析(PCA)的无线网状网络异常检测与识别

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection is becoming a powerful and necessary component as wireless networks gain popularity. In this paper, we evaluate the efficacy of PCA based anomaly detection for wireless mesh networks (WMN). PCA based method [1] was originally developed for wired networks. Our experiments show that it is possible to detect different types of anomalies, such as Denial-of-service (DoS) attack, port scan attack [1], etc., in an interference prone wireless environment. However, the PCA based method is found to be very sensitive to small changes in flows causing non-negligible number of false alarms. This problem prompted us to develop an anomaly identification scheme which automatically identifies the flow(s) causing the detected anomaly and their contributions in terms of number of packets. Our results show that the identification scheme is able to differentiate false alarms from real anomalies and pinpoint the culprit(s) in case of a real fault or threat. Moreover, we also found that the threshold value used in [1] for distinguishing normal and abnormal traffic conditions is based on assumption of normally distributed traffic which is not accurate for current network traffic which is mostly self-similar in nature. Adjusting the threshold also reduced the number of false alarms considerably. The experiments were performed over an 8 node mesh testbed deployed in a suburban area, under different realistic traffic scenarios. Our identification scheme facilitates the use of PCA based method for real-time anomaly detection in wireless networks as it can filter the false alarms locally at the monitoring nodes without excessive computational overhead.
机译:随着无线网络的普及,异常检测已成为功能强大且必要的组件。在本文中,我们评估了基于PCA的无线网状网络(WMN)异常检测的功效。基于PCA的方法[1]最初是为有线网络开发的。我们的实验表明,在容易受到干扰的无线环境中,可以检测到不同类型的异常,例如拒绝服务(DoS)攻击,端口扫描攻击[1]等。但是,发现基于PCA的方法对流量的细微变化非常敏感,从而导致错误警报的数量不可忽略。这个问题促使我们开发了一种异常识别方案,该方案可以自动识别导致检测到的异常的流量及其在数据包数量方面的贡献。我们的结果表明,该识别方案能够将假警报与实际异常区分开,并在发生实际故障或威胁的情况下查明罪魁祸首。此外,我们还发现,在[1]中用于区分正常流量和异常流量条件的阈值是基于正态分布流量的假设,该假设对于本质上大多是自相似的当前网络流量而言并不准确。调整阈值还可以大大减少错误警报的数量。实验是在不同的实际交通场景下,在郊区部署的8节点网格测试平台上进行的。我们的识别方案有助于基于PCA的方法在无线网络中进行实时异常检测,因为它可以在监视节点本地过滤虚假警报,而不会产生过多的计算开销。

著录项

  • 来源
    《Journal of interconnection networks》 |2009年第4期|517-534|共18页
  • 作者单位

    Network Systems, NICTA, Locked Bag 9013, Alexandria, NSW 1435, Australia;

    School of EE&T, University of NSW, Sydney, NSW 2052, Australia;

    School of EE&T, University of NSW, Sydney, NSW 2052, Australia;

    School of IT, University of Sydney, Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号