首页> 外文OA文献 >E-D-Net: Automatic Building Extraction From High-Resolution Aerial Images With Boundary Information
【2h】

E-D-Net: Automatic Building Extraction From High-Resolution Aerial Images With Boundary Information

机译:E-D-NET:利用边界信息的高分辨率空中图像自动建筑提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The automatic extraction of buildings from high-resolution aerial imagery plays a significant role in many urban applications. Recently, the convolution neural network (CNN) has gained much attention in remote sensing field and achieved a remarkable performance in building segmentation from visible aerial images. However, most of the existing CNN-based methods still have the problem of tending to produce predictions with poor boundaries. To address this problem, in this article, a novel semantic segmentation neural network named edge-detail-network (E-D-Net) is proposed for building segmentation from visible aerial images. The proposed E-D-Net consists of two subnetworks E-Net and D-Net. On the one hand, E-Net is designed to capture and preserve the edge information of the images. On the other hand, D-Net is designed to refine the results of E-Net and get a prediction with higher detail quality. Furthermore, a novel fusion strategy, which combines the outputs of the two subnetworks is proposed to integrate edge information with fine details. Experimental results on the INRIA aerial image labeling dataset and the ISPRS Vaihingen 2-D semantic labeling dataset demonstrate that, compared with the existing CNN-based model, the proposed E-D-Net provides noticeably more robust and higher building extraction performance, thus making it a useful tool for practical application scenarios.
机译:从高分辨率空中图像自动提取建筑物在许多城市应用中起着重要作用。最近,卷积神经网络(CNN)在遥感领域中获得了很多关注,并实现了从可见空中图像构建分段的显着性能。然而,大多数现有的基于CNN的方法仍然存在倾向于产生具有差的边界的预测的问题。为了解决这个问题,在本文中,提出了一种名为Edge-Detail-Network(E-D-Net)的新颖分割神经网络,用于从可见空中图像构建分段。所提出的E-D-Net由两个子网和D-Net组成。一方面,E-Net旨在捕获和保留图像的边缘信息。另一方面,D-Net旨在改进电子网的结果并获得更高细节质量的预测。此外,提出了一种组合两个子网的输出的新型融合策略,以将边缘信息与精细的细节集成在一起。在Inria空中图像标签数据集和isprs viaihingen 2-d语义标记数据集上的实验结果证明,与现有的基于CNN的模型相比,所提出的ED-Net提供明显更强大,更高的建筑提取性能,从而使其成为一个实际应用方案的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号