首页> 外文期刊>Image and Vision Computing >Building NAS: Automatic designation of efficient neural architectures for building extraction in high-resolution aerial images
【24h】

Building NAS: Automatic designation of efficient neural architectures for building extraction in high-resolution aerial images

机译:建筑NAS:高分辨率空中图像建筑提取高效神经架构的自动指定

获取原文
获取原文并翻译 | 示例

摘要

Building extraction, which is a fundamental task in the community of remote sensing image analysis, has been extensively applied in various applications related to smart cities. Due to the complicated background information in urban areas, how to extract building footprints from high-resolution aerial images is challenging. The recent achievements of deep learning have shed light on building extraction and other remote sensing domain tasks. However, the heavy consumption of computational resources and the design of the neural architectures became the biggest bottleneck of utilizing deep learning techniques to improve the performance. In this work, we developed a Neural Architecture Search (NAS) algorithm, dubbed BuildingNAS, for building extraction from high-resolution aerial images. In particular, we built an efficient candidate operation set upon Separable Factorized Residual Blocks as our cell-level search space. Different from previous NAS in semantic segmentation tasks, we employed the hierarchical search space and proposed the Single-Path Sampling strategy to eliminate excessive GPU memory comsumption in searching process. In addition, we proposed an entropy regularized objective for the optimization of architecture parameters. As the result, the larger batch size can be adopted in the whole pipeline to accelerate the searching process, and make the resulted architecturemore stable and accurate. We evaluated our proposed algorithm inWHUBuilding Dataset, the derived network achieved mIoU of 86.95% with only 2.05G FLOPs and 3.10Mparameters. The comparison results demonstrate that the network discovered by our algorithm can achieve great efficiency-accuracy trade-off. (c) 2020 Elsevier B.V. All rights reserved.
机译:建筑提取是遥感图像分析社区中的基本任务,已广泛应用于与智能城市有关的各种应用程序。由于城市地区的复杂背景信息,如何从高分辨率空中图像中提取建筑足迹是挑战性的。最近深入学习的成就对建筑提取和其他遥感域任务进行了揭示。然而,计算资源的沉重消费和神经结构的设计成为利用深层学习技术来提高性能的最大瓶颈。在这项工作中,我们开发了一种神经结构搜索(NAS)算法,被称为建筑物,用于从高分辨率航空图像建立提取。特别是,我们在可分离分组的残差块中建立了一个有效的候选操作,作为我们的细胞级搜索空间。与以前的NAS不同,在语义分割任务中,我们使用了分层搜索空间,并提出了单路径采样策略,以消除搜索过程中过多的GPU内存累积。此外,我们提出了一个熵正常的目标,用于优化架构参数。结果,整个管道中可以采用较大的批量大小以加速搜索过程,并使所产生的架构稳定和准确。我们评估了我们提出的DataSet中的算法,导出的网络达到了86.95%的MIOU,只有2.05g拖鞋和3.10mparameters。比较结果表明,我们的算法发现的网络可以实现卓越的效率准确性权衡。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号