首页> 外文OA文献 >Use of Machine-Learning and Load–Velocity Profiling to Estimate 1-Repetition Maximums for Two Variations of the Bench-Press Exercise
【2h】

Use of Machine-Learning and Load–Velocity Profiling to Estimate 1-Repetition Maximums for Two Variations of the Bench-Press Exercise

机译:使用机器学习和负载 - 速度分析来估计1重复的最大值锻炼的两种变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of the current study was to compare the ability of five different methods to estimate eccentric–concentric and concentric-only bench-press 1RM from load–velocity profile data. Smith machine bench-press tests were performed in an eccentric–concentric (n = 192) and a concentric-only manner (n = 176) while mean concentric velocity was registered using a linear position transducer. Load–velocity profiles were derived from incremental submaximal load (40–80% 1RM) tests. Five different methods were used to calculate 1RM using the slope, intercept, and velocity at 1RM (minimum velocity threshold—MVT) from the load–velocity profiles: calculation with individual MVT, calculation with group average MVT, multilinear regression without MVT, regularized regression without MVT, and an artificial neural network without MVT. Mean average errors for all methods ranged from 2.7 to 3.3 kg. Calculations with individual or group MVT resulted in significant overprediction of eccentric–concentric 1RM (individual MVT: difference = 0.76 kg, p = 0.020, d = 0.17; group MVT: difference = 0.72 kg, p = 0.023, d = 0.17). The multilinear and regularized regression both resulted in the lowest errors and highest correlations. The results demonstrated that bench-press 1RM can be accurately estimated from load–velocity data derived from submaximal loads and without MVT. In addition, results showed that multilinear regression can be used to estimate bench-press 1RM. Collectively, the findings and resulting equations should be helpful for strength and conditioning coaches as they would help estimating 1RM without MVT data.
机译:目前研究的目的是将五种不同方法的能力进行比较,以估计偏心 - 同心和同心的台力1RM从负载 - 速度分布数据。史密斯机床压力机测试在偏心 - 同心(n = 192)中进行,同心的方式(n = 176),而使用线性位置换能器登记平均同心速度。负载速度谱来自增量潜水载荷(40-80%1RM)测试。计算与个别MVT,计算与组平均MVT,而不MVT多元线性回归,正规化回归:五种不同的方法进行使用斜率,截距和速度在1RM(最小速度阈-MVT)从加载速度分布用于计算1RM没有MVT,没有MVT的人工神经网络。所有方法的平均误差范围为2.7至3.3千克。用个体或组MVT的计算导致偏心 - 同心1RM的显着溢出(单独的MVT:差异= 0.76kg,p = 0.020,d = 0.17;组MVT:差异= 0.72kg,p = 0.023,d = 0.17)。多线性和正则化回归均导致误差最低和最高的相关性。结果表明,可以从源自潜水载荷和没有MVT的载荷 - 速度数据准确地估计台式1RM。此外,结果表明,多线性回归可用于估计1RM。共同地,发现和结果方程应该有助于强度和调理教练,因为它们有助于估计1RM而没有MVT数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号