首页> 外文OA文献 >A Method for Aileron Actuator Fault Diagnosis Based on PCA and PGC-SVM
【2h】

A Method for Aileron Actuator Fault Diagnosis Based on PCA and PGC-SVM

机译:基于PCA和PGC-SVM的Aileron执行器故障诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aileron actuators are pivotal components for aircraft flight control system. Thus, the fault diagnosis of aileron actuators is vital in the enhancement of the reliability and fault tolerant capability. This paper presents an aileron actuator fault diagnosis approach combining principal component analysis (PCA), grid search (GS), 10-fold cross validation (CV), and one-versus-one support vector machine (SVM). This method is referred to as PGC-SVM and utilizes the direct drive valve input, force motor current, and displacement feedback signal to realize fault detection and location. First, several common faults of aileron actuators, which include force motor coil break, sensor coil break, cylinder leakage, and amplifier gain reduction, are extracted from the fault quadrantal diagram; the corresponding fault mechanisms are analyzed. Second, the data feature extraction is performed with dimension reduction using PCA. Finally, the GS and CV algorithms are employed to train a one-versus-one SVM for fault classification, thus obtaining the optimal model parameters and assuring the generalization of the trained SVM, respectively. To verify the effectiveness of the proposed approach, four types of faults are introduced into the simulation model established by AMESim and Simulink. The results demonstrate its desirable diagnostic performance which outperforms that of the traditional SVM by comparison.
机译:Aileron执行器是飞机飞行控制系统的关键部件。因此,Aileron执行器的故障诊断对于增强可靠性和容错能力至关重要。本文介绍了主成分分析(PCA),网格搜索(GS),10倍交叉验证(CV)和一对支持向量机(SVM)的Aileron执行器故障诊断方法。该方法称为PGC-SVM,采用直接驱动阀输入,力电动机电流和位移反馈信号来实现故障检测和位置。首先,从故障Quadrantal图中提取了包括力电机线圈断裂,传感器线圈断裂,圆柱泄漏和放大器增益的若干常见故障。分析相应的故障机制。其次,使用PCA的尺寸减少执行数据特征提取。最后,使用GS和CV算法来训练一次与一个SVM进行故障分类,从而获得最佳模型参数并分别确保训练的SVM的泛化。为了验证所提出的方法的有效性,引入了四种类型的故障进入由Amesim和Simulink建立的模拟模型。结果证明了其理想的诊断性能,以比较的比较优于传统SVM的诊断性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号