首页> 外文OA文献 >A new method for selecting sites for soil sampling, coupling global weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm
【2h】

A new method for selecting sites for soil sampling, coupling global weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm

机译:一种新方法,用于选择土壤采样,耦合全球加权主成分分析和成本约束条件拉丁杂交算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Analysing spatial patterns of soil properties in a landscape requires a sampling strategy that adequately covers soil toposequences. In this context, we developed a hybrid methodology that couples global weighted principal component analysis (GWPCA) and cost-constrained conditioned Latin hypercube algorithm (cLHC). This methodology produce an optimized sampling stratification by analysing the local variability of the soil property, and the influence of environmental factors. The methodology captures the maximum local variances in the global auxiliary dataset with the GWPCA, and optimizes the selection of representative sampling locations for sampling with the cLHC. The methodology also suppresses the subsampling of auxiliary datasets from areas that are less representative of the soil property of interest. Consequently, the method stratifies the geographical space of interest in order to adequately represent the soil property. We present results on the tested method (R2 = 0.90 and RMSE = 0.18 m) from the Guinea savannah zone of Ghana. • It defines the local structure and accounts for localized spatial autocorrelation in explaining variability. • It suppresses the occurrence of model-selected sampling locations in areas that are less representative of the soil property of interest. Method name: Sampling design to represent both the feature and the geographical space, Keywords: Auxiliary dataset, cLHC, GWPCA, Localised spatial soil variability, Optimised soil sampling design
机译:分析景观中土壤性质的空间模式需要采样策略,充分涵盖土壤拔纹。在这种情况下,我们开发了一种混合方法,耦合全球加权主成分分析(GWPCA)和成本约束的条件拉丁杂交算法(CLHC)。该方法通过分析土壤性质的局部可变性以及环境因素的影响,产生优化的抽样分层。该方法使用GWPCA捕获全局辅助数据集中的最大本地差异,并优化具有CLHC采样的代表性采样位置的选择。该方法还抑制了辅助数据集的辅助数据集免于较低的地区的利益的区域。因此,该方法将感兴趣的地理空间分层以充分代表土壤性质。我们从Ghana的几内亚大草原区(R2 = 0.90和RMSE = 0.18米)呈现出现的结果。 •它定义了本地结构,并在解释可变性时进行本地化空间自相关。 •它抑制了在较不代表利益土壤性质的区域的模型选择的采样位置的发生。方法名称:采样设计代表功能和地理空间,关键词:辅助数据集,CLHC,GWPCA,局部空间土壤变异性,优化土壤采样设计

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号