首页> 外文OA文献 >Hyperspectral Image Classification via Multi-Feature-Based Correlation Adaptive Representation
【2h】

Hyperspectral Image Classification via Multi-Feature-Based Correlation Adaptive Representation

机译:通过基于多特征的相关性表示的高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, representation-based methods have attracted more attention in the hyperspectral image (HSI) classification. Among them, sparse representation-based classifier (SRC) and collaborative representation-based classifier (CRC) are the two representative methods. However, SRC only focuses on sparsity but ignores the data correlation information. While CRC encourages grouping correlated variables together but lacks the ability of variable selection. As a result, SRC and CRC are incapable of producing satisfied performance. To address these issues, in this work, a correlation adaptive representation (CAR) is proposed, enabling a CAR-based classifier (CARC). Specifically, the proposed CARC is able to explore sparsity and data correlation information jointly, generating a novel representation model that is adaptive to the structure of the dictionary. To further exploit the correlation between the test samples and the training samples effectively, a distance-weighted Tikhonov regularization is integrated into the proposed CARC. Furthermore, to handle the small training sample problem in the HSI classification, a multi-feature correlation adaptive representation-based classifier (MFCARC) and MFCARC with Tikhonov regularization (MFCART) are presented to improve the classification performance by exploring the complementary information across multiple features. The experimental results show the superiority of the proposed methods over state-of-the-art algorithms.
机译:近年来,基于代表的方法在高光谱图像(HSI)分类中引起了更多的关注。其中,基于稀疏表示的分类器(SRC)和基于协作表示的分类器(CRC)是两个代表方法。但是,SRC仅关注稀疏性,但忽略了数据相关信息。虽然CRC鼓励将相关变量进行分组,但缺乏可变选择的能力。结果,SRC和CRC无法产生满意的性能。为了解决这些问题,在这项工作中,提出了一种相关自适应表示(CAR),实现了基于汽车的分类器(CARC)。具体地,所提出的CARC能够共同探索稀疏性和数据相关信息,生成一种新颖的表示模型,该模型是自适应的字典的结构。为了进一步利用测试样本和训练样本之间的相关性,将距离加权的Tikhonov规则进行集成到所提出的CARC中。此外,为了处理HSI分类中的小型训练样本问题,提出了一种基于多特征相关性的基于自适应表示的分类器(MFCARC)和MFCARC,以通过探索多个功能探索互补信息来提高分类性能。实验结果表明,所提出的方法在最先进的算法上的优越性。

著录项

  • 作者

    Guichi Liu; Lei Gao; Lin Qi;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号