首页> 外文OA文献 >Cost Forecasting Model of Transformer Substation Projects Based on Data Inconsistency Rate and Modified Deep Convolutional Neural Network
【2h】

Cost Forecasting Model of Transformer Substation Projects Based on Data Inconsistency Rate and Modified Deep Convolutional Neural Network

机译:基于数据不一致率和改进深卷积神经网络的变电站工程成本预测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Precise and steady substation project cost forecasting is of great significance to guarantee the economic construction and valid administration of electric power engineering. This paper develops a novel hybrid approach for cost forecasting based on a data inconsistency rate (DIR), a modified fruit fly optimization algorithm (MFOA) and a deep convolutional neural network (DCNN). Firstly, the DIR integrated with the MFOA is adopted for input feature selection. Simultaneously, the MFOA is utilized to realize parameter optimization in the DCNN. The effectiveness of the MFOA−DIR−DCNN has been validated by a case study that selects 128 substation projects in different regions for training and testing. The modeling results demonstrate that this established approach is better than the contrast methods with regard to forecasting accuracy and robustness. Thus, the developed technique is feasible for the cost prediction of substation projects in various voltage levels.
机译:精确和稳定的变电站项目成本预测对于保证电力工程的经济建设和有效管理方面具有重要意义。本文开发了一种基于数据不一致率(DIR)的成本预测的新型混合方法,改进的果蝇优化算法(MFOA)和深卷积神经网络(DCNN)。首先,采用与MFOA集成的DIR用于输入特征选择。同时,MFOA用于实现DCNN中的参数优化。通过案例研究验证了MFOA-DIR-DCNN的有效性,可以在不同地区选择128个变电站项目进行培训和测试。建模结果表明,这种建立的方法优于预测准确性和鲁棒性的对比方法。因此,开发技术可用于各种电压电平的变电站项目的成本预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号