首页> 外文OA文献 >COMBINING FUZZY AND CELLULAR LEARNING AUTOMATA METHODS FOR CLUSTERING WIRELESS SENSOR NETWORK TO INCREASE LIFE OF THE NETWORK
【2h】

COMBINING FUZZY AND CELLULAR LEARNING AUTOMATA METHODS FOR CLUSTERING WIRELESS SENSOR NETWORK TO INCREASE LIFE OF THE NETWORK

机译:组合模糊和蜂窝学习自动机方法对无线传感器网络来增加网络寿命

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless sensor networks have attracted attention of researchers considering their abundant applications. One of the important issues in this network is limitation of energy consumption which is directly related to life of the network. One of the main works which have been done recently to confront with this problem is clustering. In this paper, an attempt has been made to present clustering method which performs clustering in two stages. In the first stage, it specifies candidate nodes for being head cluster with fuzzy method and in the next stage, the node of the head cluster is determined among the candidate nodes with cellular learning automata. Advantage of the clustering method is that clustering has been done based on three main parameters of the number of neighbors, energy level of nodes and distance between each node and sink node which results in selection of the best nodes as a candidate head of cluster nodes. Connectivity of network is also evaluated in the second part of head cluster determination. Therefore, more energy will be stored by determining suitable head clusters and creating balanced clusters in the network and consequently, life of the network increases.
机译:无线传感器网络引起了考虑到他们丰富的应用程序的研究人员。该网络中的一个重要问题是能耗的限制,该能耗与网络的寿命直接相关。最近在这个问题上结识的主要作品之一是聚类。在本文中,已经尝试了呈现在两个阶段执行聚类的聚类方法。在第一阶段中,它指定具有模糊方法的头部群集的候选节点,并且在下一阶段中,在具有蜂窝学习自动机的候选节点中确定头部集群的节点。聚类方法的优点是基于邻居数量的三个主要参数,节点和宿节点之间的节点的能量水平和距离的三个主要参数来完成聚类,这导致最佳节点作为群集节点的候选头部。在头部集群确定的第二部分中也评估网络的连接。因此,通过确定合适的头簇并在网络中创建平衡集群,因此将存储更多能量,因此,网络的寿命增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号