首页> 外文OA文献 >RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints
【2h】

RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints

机译:RotationNet:使用无监视观点的多视图联合对象分类和姿态估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a Convolutional Neural Network (CNN)-based model "RotationNet,"which takes multi-view images of an object as input and jointly estimates itspose and object category. Unlike previous approaches that use known viewpointlabels for training, our method treats the viewpoint labels as latentvariables, which are learned in an unsupervised manner during the trainingusing an unaligned object dataset. RotationNet is designed to use only apartial set of multi-view images for inference, and this property makes ituseful in practical scenarios where only partial views are available. Moreover,our pose alignment strategy enables one to obtain view-specific featurerepresentations shared across classes, which is important to maintain highaccuracy in both object categorization and pose estimation. Effectiveness ofRotationNet is demonstrated by its superior performance to the state-of-the-artmethods of 3D object classification on 10- and 40-class ModelNet datasets. Wealso show that RotationNet, even trained without known poses, achieves thestate-of-the-art performance on an object pose estimation dataset. The code isavailable on https://github.com/kanezaki/rotationnet
机译:我们提出了一种基于卷积神经网络(CNN)的模型“RotationNet”,其将对象的多视图图像作为输入,并联合估计Itsposity和对象类别。与使用已知视点标签进行培训的先前方法不同,我们的方法将视点标签视为延迟varialbles,它们在培训中以无监督的方式学习了一个未对准的对象数据集。 RotationNet旨在仅使用仅用于推理的一个公寓多视图图像,并且此属性在实际情况下进行ITUSE,其中仅提供部分视图。此外,我们的姿势对齐策略使人们可以获得跨类共享的特定于视图特派团,这对于在对象分类和姿势估计中保持高度差异是重要的。通过对10-和40级ModelNet数据集的3D对象分类的现有性能卓越的性能来证明of rotationnet的有效性。 Wealso表明旋转网络甚至没有已知姿势培训,甚至培训,在对象姿势估计数据集上实现了最近的性能。在https://github.com/kanezaki/rotationnet上的代码是可见的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号