首页> 外文期刊>Neurocomputing >6D object pose estimation via viewpoint relation reasoning
【24h】

6D object pose estimation via viewpoint relation reasoning

机译:通过视点关系推理的6D对象姿态估计

获取原文
获取原文并翻译 | 示例

摘要

Estimating the 6D object pose is a very challenging task in computer vision. The main difficulty is mapping the object from RGB images to 3D space. In this paper, we present a novel two-stage method for estimating the 6D object pose by using the 2D keypoints of an object and its 2D bounding box. There are two stages in our method. The first stage detects the 2D keypoints and 2D bounding boxes of objects by a stable end-to-end framework. During the training phase, this framework uses viewpoint transformation information and object saliency regions to learn geometrically and semantically consistent keypoints. Then the 6D poses of objects are calculated by a series of geometric reasoning algorithms in the second stage. Experiments show that our method achieves accurate pose estimation and robust to occluded and cluttered scenes. (C) 2020 Elsevier B.V. All rights reserved.
机译:估计6D对象姿势是计算机愿景中非常具有挑战性的任务。主要困难是将对象从RGB图像映射到3D空间。在本文中,我们介绍了一种新的两阶段方法,用于使用对象的2D关键点及其2D边界框来估计6D对象姿势。我们的方法中有两个阶段。第一阶段通过稳定的端到端框架检测对象的2D关键点和2D边界框。在培训阶段,该框架使用ViewPoint转换信息和对象显着区域来学习几何和语义一致的关键点。然后通过第二阶段的一系列几何推理算法计算6D对象的姿势。实验表明,我们的方法实现了准确的姿态估计和鲁棒,以遮挡和杂乱的场景。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号