首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >RotationNet for Joint Object Categorization and Unsupervised Pose Estimation from Multi-View Images
【24h】

RotationNet for Joint Object Categorization and Unsupervised Pose Estimation from Multi-View Images

机译:来自多视图图像的联合对象分类和无监督姿态估计的旋转网络

获取原文
获取原文并翻译 | 示例

摘要

We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an unaligned object dataset. RotationNet uses only a partial set of multi-view images for inference, and this property makes it useful in practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves comparable performance to the state-of-the-art methods on an object pose estimation dataset. Furthermore, our object ranking method based on classification by RotationNet achieved the first prize in two tracks of the 3D Shape Retrieval Contest (SHREC) 2017. Finally, we demonstrate the performance of real-world applications of RotationNet trained with our newly created multi-view image dataset using a moving USB camera.
机译:我们提出了一种基于卷积神经网络(CNN)的模型“旋转网络”,其将对象的多视图图像作为输入,并联合估计其姿势和对象类别。与使用已知视点标签进行培训的先前方法不同,我们的方法将视点标签视为潜在变量,这些标签在使用未对准的对象数据集期间以无监督的方式以无监督的方式学习。 RotationNet仅使用一组部分的多视图图像进行推断,并且此属性在实际情况下非常有用,其中仅提供部分视图。此外,我们的姿势对齐策略使一个人能够获得跨类共享的特定于特定的特征表示,这对于在对象分类和姿势估计中保持高精度是重要的。旋转网络的有效性通过其卓越的性能,对10-和40级ModelNet数据集来说是最先进的3D对象分类方法。我们还显示旋转网络,甚至没有已知姿势培训,甚至培训,在对象姿势估计数据集上实现了与最先进的方法的相似性能。此外,我们通过RotationNet分类的对象排名方法在2017年的3D形状检索竞赛(SHREC)的两条轨道中实现了一等奖。最后,我们展示了RotationNet培训的真实世界应用的性能,我们的新创建的多视图图像数据集使用移动的USB相机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号