首页> 外文OA文献 >Joint Smoothing and Tracking Based on Continuous-Time Target Trajectory Function Fitting
【2h】

Joint Smoothing and Tracking Based on Continuous-Time Target Trajectory Function Fitting

机译:基于连续时间目标轨迹功能配件的关节平滑和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a continuous time state estimation framework that unifiestraditionally individual tasks of smoothing, tracking, and forecasting (STF),for a class of targets subject to smooth motion processes, e.g., the targetmoves with nearly constant acceleration or affected by insignificant noises.Fundamentally different from the conventional Markov transition formulation,the state process is modeled by a continuous trajectory function of time (FoT)and the STF problem is formulated as an online data fitting problem with thegoal of finding the trajectory FoT that best fits the observations in a slidingtime-window. Then, the state of the target, whether the past (namely,smoothing), the current (filtering) or the near-future (forecasting), can beinferred from the FoT. Our framework releases stringent statistical modeling ofthe target motion in real time, and is applicable to a broad range of realworld targets of significance such as passenger aircraft and ships which moveon scheduled, (segmented) smooth paths but little statistical knowledge isgiven about their real time movement and even about the sensors. In addition,the proposed STF framework inherits the advantages of data fitting foraccommodating arbitrary sensor revisit time, target maneuvering and misseddetection. The proposed method is compared with state of the art estimators inscenarios of either maneuvering or non-maneuvering target.
机译:我们介绍了一个连续的时间状态估计框架,即减少平滑,跟踪和预测(STF)的单一的单独各个任务,用于进行平滑运动过程的一类靶,例如,具有几乎恒定的加速度或受到微不足道的噪声影响的目标沟槽。总的来说从传统的马尔可夫转换制构中,状态过程通过时间(FOT)的连续轨迹函数来建模,并且STF问题被制定为与找到最适合滑动时间中观察的轨迹的轨迹指示的在线数据拟合问题 - 窗户。然后,目标的状态,无论是过去(即,平滑),电流(过滤)或近期(预测)都可以从FOT中留下。我们的框架实时释放了目标运动的严格统计建模,适用于广泛的RealWorld意义的目标,如搬运机和搬运的船舶,(分段)平滑的路径,但统计知识很少有关其实时运动。甚至关于传感器。此外,所提出的STF框架继承了数据配件的优点,该优势使得任意传感器Revisit Time,Target Metumating和MissEdDetection。将所提出的方法与机动或非机动目标的遗传估计者的状态进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号