This paper develops bootstrap methods to construct uniform confidence bandsfor nonparametric spectral estimation of L'{e}vy densities underhigh-frequency observations. We assume that we observe $n$ discreteobservations at frequency $1/Delta > 0$, and work with the high-frequencysetup where $Delta = Delta_{n} o 0$ and $nDelta o infty$ as $n oinfty$. We employ a spectral (or Fourier-based) estimator of the L'{e}vydensity, and develop novel implementations of Gaussian multiplier (or wild) andempirical (or Efron's) bootstraps to construct confidence bands for thespectral estimator on a compact set that does not intersect the origin. Weprovide conditions under which the proposed confidence bands are asymptoticallyvalid. Our confidence bands are shown to be asymptotically valid for a wideclass of L'{e}vy processes. We also develop a practical method for bandwidthselection, and conduct simulation studies to investigate the finite sampleperformance of the proposed confidence bands.
展开▼
机译:本文开发了引导方法,以构建L '{e} vy密度的非参数频谱估计的均匀置信带。我们假设我们观察到频率1 / delta> 0 $的$ n $ discrideobservation,并使用$ delta = delta_ {n} 到0 $和$ n delta to idty $的高频率etup AS $ n to idty $。我们采用L '{e} Vydenty的频谱(或傅里叶基)估计,并开发高斯乘法器(或野生)衰减(或efron)举止的新颖实现,以构建紧凑型集合估计器的信心带没有与原点相交。建议置信带渐近有过的Weprovide条件。我们的置信带被证明对L '{E}流程的覆盖物渐近。我们还开发了一种用于带宽选择的实用方法,并进行仿真研究,以研究提出的置信带的有限样品形式。
展开▼