首页> 外文OA文献 >A Time Integration Method Based on Galerkin Weak Form for Nonlinear Structural Dynamics
【2h】

A Time Integration Method Based on Galerkin Weak Form for Nonlinear Structural Dynamics

机译:基于Galerkin弱形的非线性结构动力学的时间集成方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a step-by-step time integration method for transient solutions of nonlinear structural dynamic problems. Taking the second-order nonlinear dynamic equations as the model problem, this self-starting one-step algorithm is constructed using the Galerkin finite element method (FEM) and Newton−Raphson iteration, in which it is recommended to adopt time elements of degree m = 1,2,3. Based on the mathematical and numerical analysis, it is found that the method can gain a convergence order of 2m for both displacement and velocity results when an ordinary Gauss integral is implemented. Meanwhile, with reduced Gauss integration, the method achieves unconditional stability. Furthermore, a feasible integration scheme with controllable numerical damping has been established by modifying the test function and introducing a special integral rule. Representative numerical examples show that the proposed method performs well in stability with controllable numerical dissipation, and its computational efficiency is superior as well.
机译:本文介绍了非线性结构动态问题瞬态解的逐步集成方法。采用二阶非线性动态方程作为模型问题,使用Galerkin有限元方法(FEM)和Newton-Raphsson迭代构建这种自启动一步算法,其中建议采用学位的时间元素= 1,2,3。基于数学和数值分析,发现该方法可以在实现普通高斯积分时,该方法可以获得2M的收敛阶数,并且当实施普通的高斯积分时,速度和速度都会产生。同时,随着高斯集成的降低,该方法实现了无条件的稳定性。此外,通过修改测试函数并引入特殊的整体规则,已经建立了具有可控数值阻尼的可行积分方案。代表性的数值示例表明,该方法在具有可控数值耗散的稳定性方面表现良好,其计算效率也优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号