首页> 外文OA文献 >Extraction of Frictional Vibration Features with Multifractal Detrended Fluctuation Analysis and Friction State Recognition
【2h】

Extraction of Frictional Vibration Features with Multifractal Detrended Fluctuation Analysis and Friction State Recognition

机译:摩擦振动特征提取多法反转波动分析及摩擦国家识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the purpose of extracting the frictional vibration characteristics of the friction pair during friction and wear in different friction states, the friction and wear tests of friction pair in different friction states were conducted on a testing machine. Higher-dimensional fractal and multifractal characteristics hidden in time series can be examined by multifractal detrended fluctuation analysis (MFDFA) method. The frictional vibration time-domain signals, the friction coefficient signals and the frictional vibration frequency-domain signals were analyzed and multifractal spectra were acquired by using the MFDFA algorithm. According to the spectra, the multifractal spectrum parameters of these signals were calculated to realize the quantitative characterization of frictional vibration characteristics in different friction states. The analysis shows that it is symmetric in the variation trends of the multifractal spectrum parameters of the frictional vibration signals and the friction coefficient data. Based on the multifractal spectrum parameters of frictional vibration, the principal component analysis (PCA) algorithm was applied to establish the friction state recognition method. The results show that the multifractal spectra and their parameters can characterize the frictional vibrations, and the friction state recognition can be realized based on the multifractal spectrum parameters of frictional vibrations.
机译:为了在不同摩擦状态下摩擦和磨损期间提取摩擦对的摩擦振动特性,在试验机上进行不同摩擦状态的摩擦对的摩擦和磨损试验。通过多法反转波动分析(MFDFA)方法可以检查时间序列中隐藏的高尺寸分形和多重分形特性。分析摩擦振动时域信号,摩擦系数信号和摩擦振动频率域信号,并使用MFDFA算法获取多分催化谱。根据光谱,计算这些信号的多法谱参数以实现不同摩擦状态的摩擦振动特性的定量表征。分析表明,摩擦振动信号的多重频谱参数的变化趋势和摩擦系数数据的变化趋势是对称的。基于摩擦振动的多重分谱参数,应用了主成分分析(PCA)算法来建立摩擦状态识别方法。结果表明,多重分谱和其参数可以表征摩擦振动,并且可以基于摩擦振动的多重谱参数来实现摩擦状态识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号