首页> 外文OA文献 >Weighted Measurement Fusion Quantized Filtering with Bandwidth Constraints and Missing Measurements in Sensor Networks
【2h】

Weighted Measurement Fusion Quantized Filtering with Bandwidth Constraints and Missing Measurements in Sensor Networks

机译:加权测量融合量化过滤,带宽约束和传感器网络中的测量缺失

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the estimation problem of a dynamic stochastic variable in a sensor network, where the quantization of scalar measurement, the optimization of the bandwidth scheduling, and the characteristic of transmission channels are considered. For the imperfect channels with missing measurements in sensor networks, two weighted measurement fusion (WMF) quantized Kalman filters based on the quantized measurements arriving at the fusion center are presented. One is dependent on the known message of whether a measurement is received. The other is dependent on the probability of missing measurements. They have the reduced computational cost and same accuracy as the corresponding centralized fusion filter. The approximate solution for the optimal bandwidth-scheduling problem is given under a limited bandwidth constraint. Furthermore, the vector measurement case is also discussed. The simulation research shows the effectiveness.
机译:本文涉及传感器网络中动态随机变量的估计问题,其中考虑了标量测量的量化,带宽调度的优化以及传输信道的特性。对于具有传感器网络中缺失测量的不完美信道,提出了两个加权测量融合(WMF)量化的基于到达融合中心的量化测量的量化Kalman滤波器。一个依赖于是否接收到测量的已知消息。另一个取决于缺少测量的概率。它们具有降低的计算成本和与相应的集中融合滤波器相同的准确性。在有限的带宽约束下给出最佳带宽调度问题的近似解。此外,还讨论了矢量测量案例。仿真研究表明了有效性。

著录项

  • 作者

    Jian Ding; Jing Ma; Shuli Sun;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号