首页> 外文学位 >In-material Processing of High Bandwidth Sensor Measurements using Modular Neural Networks
【24h】

In-material Processing of High Bandwidth Sensor Measurements using Modular Neural Networks

机译:使用模块化神经网络的高带宽传感器测量的材料内处理

获取原文
获取原文并翻译 | 示例

摘要

Robotic materials are a novel class of materials that tightly integrate sensing, computing, and actuation into an engineered material or composite to allow the behavior of the material to be defined algorithmically. Robotic materials are constructed using an embedded network of computing nodes based on small, inexpensive microcontrollers. Examples of such materials include morphable airfoils which change shape in response to flight conditions or mission parameters, robotic skins with rich tactile sensing capabilities that recognize texture or touch gestures, clothing with tightly integrated sensing to assist with or augment the wearer's perception of the environment, or materials with dynamic camouflage capabilities.;In this thesis, I develop a framework for in-material processing which tightly couples modularized deep neural networks and high-bandwidth sensors using a network of embedded, material-scale components. This framework enables materials to learn multiple desired responses to stimuli, avoiding the need for accurate modeling of the dynamics of the material and stimuli.;I utilize a modular neural network design consisting of convolutional (CNN) and long short-term memory (LSTM) layers implemented in each node in the material as a computational approach for robotic materials. This network architecture allows for nodes in the material to process local sensor values, maintain local state information, and communicate with nodes in a local neighborhood in the materials. A multiobjective optimization approach is employed to automatically design the neural network architectures which maximizes the performance of the network while ensuring hardware budgets, such as memory requirements, are maintained. A communication network design is also developed to allow network modules to learn a communication protocol that limits communication to a desired rate, ensuring in-network bandwidth constraints are maintained.;I demonstrate the suitability of this computational model for robotic materials using examples in several domains. An RF-based e-textile gesture input device capable of distinguishing between user control gestures is used to control arbitrary external devices. A tire with embedded piezoelectric sensing capabilites for use in high-performance autonomous vehicles performs state-of-the-art identification of terrains driven on. Two robotic skins are presented---one which is capable of detecting and localizing contact, and identifying the texture of the contacting objects; and a second which assists with avoiding collisions with obstacles and identifies affective touch gestures performed by a human collaborator. Finally, a distributed approach to human activity recognition is presented whose activity identification performance is comparable to a centralized approach, but can be implemented on hardware designed for wearable applications, as opposed to a GPU-enabled device. The examples shown demonstrate that robotic materials can perform significant in-material processing; are loosely coupled from a host system, communicating a minimal number of low-bandwidth events to the host; and can exhibit multifunctional behavior that is analyzed for safety or performance considerations.
机译:机器人材料是一类新颖的材料,它将传感,计算和驱动紧密地集成到工程材料或复合材料中,从而可以通过算法定义材料的行为。机器人材料是使用基于小型,廉价微控制器的嵌入式计算节点网络构建的。此类材料的示例包括可变形的机翼,这些机翼可根据飞行条件或任务参数而改变形状;具有丰富的触觉感应功能的机器人皮肤能够识别纹理或触摸手势;紧密结合感应的服装有助于或增强穿戴者对环境的感知;或具有动态伪装功能的材料。;本文中,我开发了一种材料内处理框架,该框架使用嵌入式材料级组件网络将模块化的深度神经网络与高带宽传感器紧密耦合。该框架使材料能够学习多种对刺激的期望响应,而无需对材料和刺激的动力学进行精确建模。;我利用由卷积(CNN)和长短期记忆(LSTM)组成的模块化神经网络设计在材料中的每个节点中实现的层作为机器人材料的一种计算方法。这种网络体系结构允许物料中的节点处理本地传感器值,维护本地状态信息以及与物料中本地邻居中的节点进行通信。采用多目标优化方法来自动设计神经网络体系结构,该体系结构可在确保硬件预算(例如内存需求)得到维持的同时最大化网络性能。还开发了一种通信网络设计,以允许网络模块学习将通信限制为所需速率的通信协议,从而确保维持网络内带宽约束。我使用多个领域的示例演示了此计算模型对机器人材料的适用性。 。能够区分用户控制手势的基于RF的电子纺织手势输入设备用于控制任意外部设备。用于高性能自动驾驶汽车的具有嵌入式压电感应功能的轮胎可对行驶的地形进行最先进的识别。展示了两种机器人皮肤-一种能够检测和定位接触并识别接触对象的纹理的机器人皮肤;第二个帮助避免与障碍物的碰撞,并识别人类协作者执行的情感触摸手势。最后,提出了一种用于人类活动识别的分布式方法,该方法的活动识别性能与集中式方法相当,但是可以在针对可穿戴应用程序设计的硬件上实现,而不是与启用GPU的设备相对应。所显示的示例表明,机器人材料可以执行重要的材料内处理。与主机系统松散耦合,将最少数量的低带宽事件传达给主机;并且可以展示出于安全或性能考虑而进行分析的多功能行为。

著录项

  • 作者

    Hughes, Dana.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Robotics.;Artificial intelligence.;Computer science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号