首页> 外文OA文献 >Ratio-Detector-Based Feature Extraction for Very High Resolution SAR Image Patch Indexing
【2h】

Ratio-Detector-Based Feature Extraction for Very High Resolution SAR Image Patch Indexing

机译:基于比率的基于探测器的高分辨率SAR图像补丁索引的特征提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the advent of very high resolution (VHR) synthetic aperture radar (SAR) images, local content description is becoming a critical issue for indexing. Conventional SAR image analysis techniques, like segmentation and pixel-level classification, are likely to fail as high-level semantic description should be considered for better discrimination. Therefore, we propose to use image-patch-based analysis method for SAR image interpretation. Inspired by ratio edge detector, in this letter, a new feature extraction method represented by the mean ratios in different directions is proposed for VHR SAR image content characterization. Based on the mean ratio, two simple yet powerful and robust features are proposed for SAR image patch indexing. One is the bag-of-word model using not only the basic statistics, i.e., local mean and variance, but also the mean ratios in different directions. The second one is an adaptation of the Weber local descriptor to SAR images by substituting the gradient with the ratio of mean differences in vertical and horizontal directions. To evaluate the proposed features, image patch indexing based on active learning using a SAR image database consisting of high-resolution TerraSAR-X patches is performed. Comparison with the state-of-the-art features, particularly texture features, has shown improved performance for SAR image categorization.
机译:随着非常高分辨率(VHR)合成孔径雷达(SAR)图像的出现,本地内容描述正在成为索引的关键问题。传统的SAR图像分析技术,如分割和像素级分类,可能会因高电平语义描述而被认为是为了更好的辨别。因此,我们建议使用基于图像补丁的分析方法来进行SAR图像解释。由比率边缘检测器的启发,在这封信中,提出了由不同方向上的平均比例表示的新特征提取方法,用于VHR SAR图像内容表征。基于平均值,提出了两个简单而强大的强大功能,用于SAR图像补丁索引。一个是单词袋式模型,不仅使用基本统计,即局部均值和方差,还使用不同方向的平均比率。第二个是通过将梯度代替垂直和水平方向的平均差异的比率来改编韦伯本地描述符对SAR图像的调整。为了评估所提出的特征,执行基于主动学习的图像补丁索引,使用由高分辨率Terrasar-X补丁组成的SAR图像数据库。与最先进的功能,特别是纹理特征的比较显示了SAR图像分类的提高性能。

著录项

  • 作者

    C. O. Dumitru; M. Datcu;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 deu/ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号