首页> 外文OA文献 >Semantic Profiling and Destination Recommendation based on Crowd-sourced Tourist Reviews
【2h】

Semantic Profiling and Destination Recommendation based on Crowd-sourced Tourist Reviews

机译:基于人群灌溉旅游评论的语义分析和目的地推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays tourists rely on technology for inspiration, research, booking, experiencing and sharing. Not only it provides access to endless sources of information, but has become an unbounded source of tourist-related data. In such crowd-sourced data-intensive scenario, we argue that new approaches are required to enrich current and new travelling experiences. This work, which supports the “dreaming stage”, proposes the automatic recommendation of personalised destinations based on textual reviews, i.e., a semantic content-based filter of crowd-sourced information. Our approach relies on Topic Modelling – to extract meaningful information from textual reviews – and Semantic Similarity – to identify relevant recommendations. Our main contribution is the processing of crowd-sourced tourism information employing data mining techniques in order to automatically discover untapped destinations on behalf of tourists.
机译:如今游客依靠技术的灵感,研究,预订,体验和分享。不仅它提供对无穷无尽的信息来源,而且已成为与旅游相关数据无限的来源。在这种人群源性数据密集型情景中,我们认为需要丰富当前和新的旅行经验所必需的新方法。这项工作支持“梦幻阶段”,提出了基于文本评测的个性化目的地的自动推荐,即,基于语义的群体信息的基于语义的信息的过滤器。我们的方法依赖于主题建模 - 从文本评论中提取有意义的信息 - 和语义相似性 - 识别相关建议。我们的主要贡献是处理采用数据挖掘技术的人群源旅游信息,以便代表游客自动发现未开发的目的地。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号