首页> 外文OA文献 >Solving the Time-Jerk Optimal Trajectory Planning Problem of a Robot Using Augmented Lagrange Constrained Particle Swarm Optimization
【2h】

Solving the Time-Jerk Optimal Trajectory Planning Problem of a Robot Using Augmented Lagrange Constrained Particle Swarm Optimization

机译:使用增强拉格朗郎约束粒子群优化解决机器人的时间jerk最佳轨迹规划问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of minimum time-jerk trajectory planning for a robot is discussed in this paper. The optimal objective function is composed of two segments along the trajectory, which are the proportional to the total execution time and the proportional to the integral of the squared jerk (which denotes the derivative of the acceleration). The augmented Lagrange constrained particle swarm optimization (ALCPSO) algorithm, which combines the constrained particle swarm optimization (CPSO) with the augmented Lagrange multiplier (ALM) method, is proposed to optimize the objective function. In this algorithm, falling into a local best value can be avoided because a new particle swarm is generated per initial procedure, and the best value gained from the former generation is saved and delivered to the next generation during the iterative search procedure to enable the best value to be found more easily and more quickly. Finally, the proposed algorithm is tested on a planar 3-degree-of-freedom (DOF) robot; the simulation results show that the algorithm is effective, offering a solution to the time-jerk optimal trajectory planning problem of a robot under nonlinear constraints.
机译:本文讨论了机器人最小时间延长轨迹规划的问题。最佳目标函数由沿轨迹的两个段组成,这是与总执行时间的比例和与平方jerk的积分成比例(表示加速度的导数)。建议使用增强拉格朗日倍增器(ALM)方法的约束拉格朗日约束粒子群优化优化(ALCPSO)算法与增强拉格朗日乘法器(ALM)方法相结合以优化目标函数。在该算法中,可以避免落入本地最佳值,因为每个初始过程产生新的粒子群,并且在迭代搜索过程中保存并传递到前一代的最佳值,并将其传送到下一代以实现最佳要更容易和更快地找到的价值。最后,在平面3 - 自由度(DOF)机器人上测试了所提出的算法;仿真结果表明,该算法是有效的,为非线性约束下的机器人提供了解决方案的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号