首页> 外文OA文献 >Robust Filtering for State and Fault Estimation of Linear Stochastic Systems with Unknown Disturbance
【2h】

Robust Filtering for State and Fault Estimation of Linear Stochastic Systems with Unknown Disturbance

机译:具有未知干扰线性随机系统的状态和故障估计的鲁棒滤波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new robust filter structure to solve the simultaneous state and fault estimation problem of linearstochastic discrete-time systems with unknown disturbance. The method is based on the assumption that the fault and theunknown disturbance affect both the system state and the output, and no prior knowledge about their dynamical evolution isavailable. By making use of an optimal three-stage Kalman filtering method, an augmented fault and unknown disturbancemodels, an augmented robust three-stage Kalman filter (ARThSKF) is developed. The unbiasedness conditions and minimum-varianceproperty of the proposed filter are provided. An illustrative example is given to apply this filter and to compare itwith the existing literature results.
机译:本文介绍了一种新的强大滤波器结构,可以解决具有未知干扰的线性旋转分立时间系统的同时状态和故障估计问题。该方法基于假设故障和南京干扰影响系统状态和输出,并且没有关于其动态演进的先验知识。通过利用最佳的三级卡尔曼滤波方法,开发了一个增强的故障和未知的DiskanceModel,一种增强的坚固的三级卡尔曼滤波器(Arthskf)。提供了所提出的过滤器的无偏见条件和最小范围。给出了说明性示例来应用该过滤器并与现有文献结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号