首页> 外文OA文献 >Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
【2h】

Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

机译:GPU上主动外观模型拟合算法的高效平行实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
机译:主动外观模型(AAM)是最强大的基于模型的物体检测和跟踪方法之一,其已广泛用于各种情况。然而,高维纹理表示导致非常耗时的计算,这使得AAM难以应用于实时系统。现代图形处理单元(GPU)的出现具有多核,细粒度的并行架构提供了新的和有希望的解决方案,以克服计算挑战。在本文中,我们提出了在GPU上的AAM拟合算法的有效平行实现。我们的设计理念是细粒行活,其中我们将AAM的纹理数据分发给像素,以千像GPU线程进行处理,这使得该算法更好地装入GPU架构。我们使用NVIDIA的GTX 650 GPU上的Compute Unified Device架构(CUDA)来实现我们的算法,该架构具有最新的开普勒架构。为了使用不同的数据尺寸进行比较我们算法的性能,我们建立了十六个面对不同维度纹理的AAM模型。实验结果表明,即使在非常高维的纹理上,我们并行AAM拟合算法也可以实现视频的实时性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号