首页> 外文期刊>Journal of Global Optimization >An efficient implementation of parallel simulated annealing algorithm in GPUs
【24h】

An efficient implementation of parallel simulated annealing algorithm in GPUs

机译:GPU中并行模拟退火算法的有效实现

获取原文
获取原文并翻译 | 示例

摘要

In this work we propose a highly optimized version of a simulated annealing (SA) algorithm adapted to the more recently developed graphic processor units (GPUs). The programming has been carried out with compute unified device architecture (CUDA) toolkit, specially designed for Nvidia GPUs. For this purpose, efficient versions of SA have been first analyzed and adapted to GPUs. Thus, an appropriate sequential SA algorithm has been developed as starting point. Next, a straightforward asynchronous parallel version has been implemented and then a specific and more efficient synchronous version has been developed. A wide appropriate benchmark to illustrate the performance properties of the implementation has been considered. Among all tests, a classical sample problem provided by the minimization of the normalized Schwefel function has been selected to compare the behavior of the sequential, asynchronous and synchronous versions, the last one being more advantageous in terms of balance between convergence, accuracy and computational cost. Also the implementation of a hybrid method combining SA with a local minimizer method has been developed. Note that the generic feature of the SA algorithm allows its application in a wide set of real problems arising in a large variety of fields, such as biology, physics. engineering, finance and industrial processes.
机译:在这项工作中,我们提出了模拟退火(SA)算法的高度优化版本,适用于最近开发的图形处理器单元(GPU)。该编程是使用专门为Nvidia GPU设计的计算统一设备架构(CUDA)工具包进行的。为此,首先对SA的高效版本进行了分析,并使其适用于GPU。因此,已经开发了适当的顺序SA算法作为起点。接下来,实现了一个简单的异步并行版本,然后开发了一个特定且更有效的同步版本。已经考虑了广泛的适当基准来说明实施的性能属性。在所有测试中,已选择了通过最小化标准化Schwefel函数提供的经典样本问题,以比较顺序,异步和同步版本的行为,最后一个在收敛性,准确性和计算成本之间取得平衡方面更具优势。还开发了将SA与局部最小化方法相结合的混合方法的实现。请注意,SA算法的通用功能使其可以应用在生物学,物理学等众多领域中产生的大量实际问题中。工程,金融和工业流程。

著录项

  • 来源
    《Journal of Global Optimization》 |2013年第3期|863-890|共28页
  • 作者单位

    Department of Mathematics, Faculty of Informatics, Universiclade da Coruna Campus Elvina s, 15071-A Coruna, Spain;

    Department of Mathematics, Faculty of Informatics, Universiclade da Coruna Campus Elvina s, 15071-A Coruna, Spain;

    Department of Mathematics, Faculty of Informatics, Universiclade da Coruna Campus Elvina s, 15071-A Coruna, Spain;

    Department of Mathematics, Faculty of Informatics, Universiclade da Coruna Campus Elvina s, 15071-A Coruna, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Global optimization; Simulated annealing; Parallel computing; GPUs; CUDA;

    机译:全局优化模拟退火;并行计算GPU;卡达;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号