首页> 外文OA文献 >Interaction-Based Distributed Learning in Cyber-Physical and Social Networks
【2h】

Interaction-Based Distributed Learning in Cyber-Physical and Social Networks

机译:基于互动的网络 - 物理和社交网络的分布式学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we consider a network scenario in which agents can evaluateeach other according to a score graph that models some physical or socialinteraction. The goal is to design a distributed protocol, run by the agents,allowing them to learn their unknown state among a finite set of possiblevalues. We propose a Bayesian framework in which scores and states areassociated to probabilistic events with unknown parameters and hyperparametersrespectively. We prove that each agent can learn its state by means of a localBayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator ofthe parameter-hyperparameter that combines plain ML and Empirical Bayesapproaches. By using tools from graphical models, which allow us to gaininsight on conditional dependences of scores and states, we provide two relaxedprobabilistic models that ultimately lead to ML parameter-hyperparameterestimators amenable to distributed computation. In order to highlight theappropriateness of the proposed relaxations, we demonstrate the distributedestimators on a machine-to-machine testing set-up for anomaly detection and ona social interaction set-up for user profiling.
机译:在本文中,我们考虑了一个网络场景,其中代理可以根据展示一些物理或社会互动的分数图来评估其它的其他。目标是设计一种分布式协议,由代理商运行,允许他们在有限一套中学习其未知状态。我们提出了一个贝叶斯框架,其中分数和状态与未知参数和超参数的概率事件分区。我们证明,每个代理人可以通过LocalBayesian分类器和(集中)的最大似然(ML)估计来学习其州的参数 - 超参数的最大可能性(ML)估计,这与普通的ML和经验贝内斯贝内斯的参数封锁。通过使用图形模型的工具,使我们能够纳入分数和状态的条件依赖性,我们提供了两个放松的专家模型,最终导致ML参数 - 超参数,适用于分布式计算。为了突出拟议的放松的表现,我们展示了用于异常检测和ONA社交交互设置的机器到机器测试设置中的分布式主旨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号