首页> 外文期刊>IEEE Transactions on Automatic Control >Interaction-Based Distributed Learning in Cyber-Physical and Social Networks
【24h】

Interaction-Based Distributed Learning in Cyber-Physical and Social Networks

机译:基于互动的网络 - 物理和社交网络的分布式学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider a network scenario in which agents can evaluate each other according to a score graph that models some physical or social interaction. The goal is to design a distributed protocol, run by the agents, allowing them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We prove that each agent can learn its state by combining a local Bayesian classifier with a (centralized) Maximum Likelihood (ML) estimator of the parameter-hyperparameter. To overcome the intractability of the ML problem, we provide two relaxed probabilistic models that lead to distributed estimation schemes with affordable complexity. In order to highlight the appropriateness of the proposed relaxations, we demonstrate the distributed estimators on a machine-to-machine testing setup for anomaly detection and on a social interaction setup for user profiling.
机译:在本文中,我们考虑了一种网络场景,其中代理可以根据模拟一些物理或社交交互的分数图来互相评估。目标是设计一种分布式协议,由代理运行,允许它们在有限组可能的值中学习其未知状态。我们提出了一个贝叶斯框架,其中分数和各州分别与具有未知参数和超参数的概率事件相关联。我们证明每个代理通过将本地贝叶斯分类器与参数 - 超参数的最大似然(ML)估计的估计器组合,每个代理可以通过与(集中)的最大可能性(ML)估计器组合来学习其状态。为了克服ML问题的诡计,我们提供了两个放松的概率模型,导致分布式估计方案,具有价格实惠的复杂性。为了突出所提出的放松的适当性,我们展示了用于异常检测的机器到机器测试设置和用于用户分析的社交交互设置的分布式估计器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号