首页> 外文OA文献 >A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves
【2h】

A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves

机译:一种求解描述长自由表面重力波的SERRE-Green-Naghdi方程的快速数值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a 'master' lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. It is the most time-consuming part of the numerical method. The idea is to replace the 'master' lagrangian by a one-parameter family of 'extended' lagrangians, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the 'master' lagrangian is recovered by the 'extended' lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of extended lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solution of the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is, in particular, applied to study the 'Favre waves' which are non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.
机译:提出了一种求解描述浅水中的分散波的SERRE-Green-Naghdi(SGN)方程的新数值方法。从数学的角度来看,SGN方程是“大师”拉格朗日提交给差别限制的欧拉拉格朗兰语方程,这是大规模保护法。解决SGN方程时的一个主要数值挑战是每次瞬间的椭圆问题的分辨率。它是数值方法中最耗时的部分。这个想法是通过一个参数族的“扩展”拉格朗日的一个参数系列替换“Master”拉格朗日,相应的Euler Lagrange方程是双曲线的。在这样的方法中,“大师”拉格朗日在某些限制中被“扩展”拉格朗日恢复(例如,当相应的参数大时)。提出并讨论了这样一个延长拉格朗士家庭的选择。相应的双曲线系统由Godunov型方法进行数值解决。将数值解决方案与SGN方程的精确解进行比较。似乎求解双曲线系统的计算时间远低于椭圆算子反转的情况。特别地,新方法尤其适用于研究“Favre波”,该“Favre Wave”是在用固定壁上的自由表面反射的流体流动后产生的非平稳非孔的孔。

著录项

  • 作者

    N Favrie; S Gavrilyuk;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号