首页> 外文OA文献 >Machine Learning-Based Framework for Differential Diagnosis Between Vascular Dementia and Alzheimer's Disease Using Structural MRI Features
【2h】

Machine Learning-Based Framework for Differential Diagnosis Between Vascular Dementia and Alzheimer's Disease Using Structural MRI Features

机译:基于机器学习的血管痴呆与阿尔茨海默病的鉴别诊断框架使用结构MRI特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background and Objective: Vascular dementia (VaD) and Alzheimer's disease (AD) could be characterized by the same syndrome of dementia. This study aims to assess whether multi-parameter features derived from structural MRI can serve as the informative biomarker for differential diagnosis between VaD and AD using machine learning.Methods: A total of 93 patients imaged with brain MRI including 58 AD and 35 VaD confirmed by two chief physicians were recruited in this study from June 2013 to July 2019. Automated brain tissue segmentation was performed by the AccuBrain tool to extract multi-parameter volumetric measurements from different brain regions. Firstly, a total of 62 structural MRI biomarkers were addressed to select significantly different features between VaD and AD for dimensionality reduction. Then, the least absolute shrinkage and selection operator (LASSO) was further used to construct a feature set that is fed into a support vector machine (SVM) classifier. To ensure the unbiased evaluation of model performance, a comparative study of classification models was implemented by using different machine learning algorithms in order to determine which performs best in the application of differential diagnosis between VaD and AD. The diagnostic performance of the classification models was evaluated by the quantitative metrics derived from the receiver operating characteristic curve (ROC).Results: The experimental results demonstrate that the SVM with RBF achieved an encouraging performance with sensitivity (SEN), specificity (SPE), and accuracy (ACC) values of 82.65%, 87.17%, and 84.35%, respectively (AUC = 0.861, 95% CI = 0.820–0.902), for the differential diagnosis between VaD and AD.Conclusions: The proposed computer-aided diagnosis method highlights the potential of combining structural MRI and machine learning to support clinical decision making in distinction of VaD vs. AD.
机译:背景和目的:血管性痴呆(VAD)和阿尔茨海默病(AD)可以表征痴呆症同一综合征。本研究旨在评估来自结构MRI的多参数特征是否可以作为使用机器学习的VAD和AD之间的差异诊断的信息生物标志物。方法:总共93名与脑MRI成像,包括58个AD和35 VAD,并确认从2013年6月到2019年7月,本研究招募了两项主生医生。通过Accubrain工具进行自动脑组织分割,以从不同脑区中提取多参数体积测量。首先,解决了62个结构MRI生物标志物,以选择VAD和AD之间的显着不同的特征,以减少维度。然后,最不绝对的收缩和选择操作员(套索)还用于构造被馈送到支持向量机(SVM)分类器的特征集。为了确保对模型性能的无偏见评估,通过使用不同的机器学习算法来实现对分类模型的比较研究,以便确定在应用VAD和广告之间的应用中最佳地表演。通过从接收器操作特征曲线(ROC)的定量度量来评估分类模型的诊断性能。结果:实验结果表明,具有RBF的SVM达到了敏感性(SEN),特异性(SPE)的令人鼓舞的表现,和精度(ACC)分别为82.65%,87.17%和84.35%(AUC = 0.861,95%CI = 0.820-0.902),用于VAD和AD的差异诊断:CONCLUSIONS:提出的计算机辅助诊断方法突出了结构MRI和机器学习,支持VAD与广告的区别临床决策的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号