首页> 外文OA文献 >Approximate similarity search for online multimedia services on distributed CPU–GPU platforms
【2h】

Approximate similarity search for online multimedia services on distributed CPU–GPU platforms

机译:近似相似性搜索分布式CPU-GPU平台上的在线多媒体服务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Similarity search in high-dimentional spaces is a pivotal operation found avariety of database applications. Recently, there has been an increase interestin similarity search for online content-based multimedia services. Thoseservices, however, introduce new challenges with respect to the very largevolumes of data that have to be indexed/searched, and the need to minimizeresponse times observed by the end-users. Additionally, those users dynamicallyinteract with the systems creating fluctuating query request rates, requiringthe search algorithm to adapt in order to better utilize the underline hardwareto reduce response times. In order to address these challenges, we introducehypercurves, a flexible framework for answering approximate k-nearest neighbor(kNN) queries for very large multimedia databases, aiming at onlinecontent-based multimedia services. Hypercurves executes on hybrid CPU--GPUenvironments, and is able to employ those devices cooperatively to supportmassive query request rates. In order to keep the response times optimal as therequest rates vary, it employs a novel dynamic scheduler to partition the workbetween CPU and GPU. Hypercurves was throughly evaluated using a large databaseof multimedia descriptors. Its cooperative CPU--GPU execution achievedperformance improvements of up to 30x when compared to the single CPU-coreversion. The dynamic work partition mechanism reduces the observed queryresponse times in about 50% when compared to the best static CPU--GPU taskpartition configuration. In addition, Hypercurves achieves superlinearscalability in distributed (multi-node) executions, while keeping a highguarantee of equivalence with its sequential version --- thanks to the proof ofprobabilistic equivalence, which supported its aggressive parallelizationdesign.
机译:在高维空间中进行相似性搜索是各种数据库应用程序中的一项关键操作。近来,对于基于在线内容的多媒体服务的相似性搜索的兴趣增加了。但是,这些服务给必须索引/搜索的大量数据带来了新的挑战,并且需要最大限度地减少最终用户观察到的响应时间。另外,那些用户与系统动态交互,从而产生波动的查询请求率,需要搜索算法进行调整才能更好地利用下划线硬件来减少响应时间。为了解决这些挑战,我们引入了hypercurves,这是一种针对大型多媒体数据库的近似k近邻(kNN)查询的灵活框架,旨在基于在线内容的多媒体服务。 Hypercurves在混合CPU-GPU环境上执行,并且能够协同使用这些设备来支持大规模查询请求率。为了使响应时间随请求速率的变化而保持最佳状态,它采用了一种新颖的动态调度程序来划分CPU和GPU之间的工作。使用大型的多媒体描述符数据库对超曲线进行了全面评估。与单核CPU版本相比,其协作式CPU-GPU执行性能提高了30倍。与最佳的静态CPU--GPU任务分区配置相比,动态工作分区机制将观察到的查询响应时间减少了约50%。此外,Hypercurves在分布式(多节点)执行中实现了超线性可扩展性,同时通过顺序版本保持了较高的等效性,这要归功于概率等效性的证明,该证明支持其积极的并行化设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号