首页> 外文期刊>Journal of Parallel and Distributed Computing >Large-scale parallel similarity search with Product Quantization for online multimedia services
【24h】

Large-scale parallel similarity search with Product Quantization for online multimedia services

机译:用于在线多媒体服务的带有产品量化的大规模并行相似度搜索

获取原文
获取原文并翻译 | 示例

摘要

The similarity search in high-dimensional spaces is a core operation found in several online multimedia retrieval applications. With the popularity of these applications, they are required to handle very large and increasing datasets, while keeping the response time low. This problem is worsened in the context of online applications, mostly due to the fact that load on these systems vary during the execution according to the users demands. Those variations require the application to adapt during the execution in order to minimize the response times. In this paper, we address these challenges with an efficient parallelization of the Product Quantization Approximate Nearest Neighbor Search (PQANNS) indexing. This method is capable of answering queries with a reduced memory demand and, coupled with a distributed memory parallelization proposed here, can efficiently handle very large datasets. We have also proposed mechanisms to minimize the query response times in online scenarios in which the query rates vary at run-time. For this sake, our strategies tune the parallelism configurations and task granularity during the execution. The parallelism and granularity tuning approaches (ADAPT and ADAPT+G) have shown, for instance, to reduce the query response times by a factor of 6.4x in comparison with the best static configuration of parallelism and task granularity. Further, the distributed memory execution using 128 nodes/3584 CPU cores has attained a parallel efficiency of 0.97 with a dataset of 256 billion SIFT vectors. (C) 2018 Elsevier Inc. All rights reserved.
机译:高维空间中的相似性搜索是在几个在线多媒体检索应用程序中发现的核心操作。随着这些应用程序的普及,要求它们处理非常大且不断增加的数据集,同时保持较低的响应时间。在在线应用程序的情况下,此问题变得更加严重,这主要是由于这些系统上的负载在执行期间会根据用户需求而变化。这些变化要求应用程序在执行期间进行调整,以最大程度地缩短响应时间。在本文中,我们通过对产品量化近似最近邻搜索(PQANNS)索引进行有效的并行处理来应对这些挑战。此方法能够以减少的内存需求来回答查询,并且与此处提出的分布式内存并行化相结合,可以有效地处理非常大的数据集。我们还提出了使查询率在运行时变化的在线方案中的查询响应时间最小化的机制。为此,我们的策略在执行过程中调整了并行配置和任务粒度。例如,与并行性和任务粒度的最佳静态配置相比,并行性和粒度调整方法(ADAPT和ADAPT + G)已显示出将查询响应时间减少了6.4倍。此外,使用128个节点/ 3584个CPU内核的分布式内存执行,具有256亿个SIFT向量的数据集,并行效率为0.97。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号