首页> 外文OA文献 >Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol
【2h】

Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol

机译:使用基于环境气溶胶的放射性碳测量,在基于湿度计的源分配中评估交通和木材燃烧的吸收Ångström指数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Equivalent black carbon (EBC) measured by amulti-wavelength Aethalometer can be apportioned to traffic and woodburning. The method is based on the differences in the dependence of aerosolabsorption on the wavelength of light used to investigate the sample,parameterized by the source-specific absorption Ångström exponent(). While the spectral dependence (defined as values) ofthe traffic-related EBC light absorption is low, wood smoke particlesfeature enhanced light absorption in the blue and near ultraviolet. Sourceapportionment results using this methodology are hence strongly dependent onthe values assumed for both types of emissions: traffic , and wood burning . Most studies use a single and pair in the Aethalometer model,derived from previous work. However, an accurate determination of the sourcespecific values is currently lacking and in some recentpublications the applicability of the Aethalometer model was questioned.Here we present an indirect methodology for the determination of and by comparing the source apportionment of EBCusing the Aethalometer model with C measurements of the EC fractionon 16 to 40 h filter samples from several locations and campaigns acrossSwitzerland during 2005–2012, mainly in winter. The data obtained at eightstations with different source characteristics also enabled the evaluationof the performance and the uncertainties of the Aethalometer model indifferent environments. The best combination of and (0.9 and 1.68, respectively) was obtained by fitting theAethalometer model outputs (calculated with the absorption coefficients at470 and 950 nm) against the fossil fraction of EC (EC ∕ EC) derivedfrom C measurements. Aethalometer and C source apportionmentresults are well correlated (  =  0.81) and the fitting residuals exhibitonly a minor positive bias of 1.6 % and an average precision of 9.3 %.This indicates that the Aethalometer model reproduces reasonably well theC results for all stations investigated in this study using our bestestimate of a single and pair. Combiningthe EC, C, and Aethalometer measurements further allowed assessing thedependence of the mass absorption cross section (MAC) of EBC on its source.Results indicate no significant difference in MAC at 880 nm between EBCoriginating from traffic or wood-burning emissions. Using EC ∕ EC asreference and constant a priori selected values, was also calculated for each individual data point. No clearstation-to-station or season-to-season differences in wereobserved, but and values areinterdependent. For example, an increase in by 0.1 resultsin a decrease in by 0.1. The fitting residuals of different and combinations depend on EC ∕ ECsuch that a good agreement cannot be obtained over the entire EC ∕ ECrange using other pairs. Additional combinations of   =  0.8, and 1.0 and   =  1.8 and 1.6,respectively, are possible but only for EC ∕ EC between  ∼  40 and 85 %. Applying values previously used in theliterature such as of  ∼  2 or any in combination with   =  1.1 to our data setresults in large residuals. Therefore we recommend to use the best combination as obtained here (  =  0.9 and   =  1.68) in future studies when no or only limited additionalinformation like C measurements are available. However, these resultswere obtained for locations impacted by black carbon (BC) mainly fromtraffic consisting of a modern car fleet and residential wood combustionwith well-constrained combustion efficiencies. For regions of the world withdifferent combustion conditions, additional BC sources, or fuels used, furtherinvestigations are needed.
机译:通过多波长烟度计测量的等效黑碳(EBC)可分配给交通和木材燃烧。该方法基于气溶胶吸收对用于研究样品的光波长的依赖性的差异,该差异由特定于源的吸收Ångströmexponent()参数化。尽管与交通相关的EBC光吸收的光谱依赖性(定义为值)较低,但是木烟颗粒的特征是增强了蓝色和近紫外光的光吸收。因此,使用这种方法的源分配结果在很大程度上取决于为两种排放量(交通和木材燃烧)假定的值。大多数研究是在以前的工作中得出的,在“风速表”模型中使用的是一对。但是,目前尚缺乏准确确定源特定值的方法,并且在最近的一些出版物中,有人质疑了声速计模型的适用性。在此,我们提出了一种间接方法,用于确定声速计的模型并通过将声速计模型的EBC分配与C的C测量值进行比较来进行比较在2005年至2012年期间,主要是在冬季,EC馏分从16个至40 andh的过滤器中抽出了来自瑞士多个地点和活动的样品。在八个具有不同源特性的站点上获得的数据还可以评估不同环境下的声速计模型的性能和不确定性。通过将Aethalometer模型输出(以470和950 nm的吸收系数计算)与从C测量得出的EC的化石分数(EC ∕ EC)拟合,可获得的最佳组合(分别为0.9和1.68)。湿度计和C源的分配结果具有良好的相关性(= 0.81),拟合残差仅表现出1.6%的较小正偏差和9.3%的平均精度,这表明在该研究中,所有测量站的A值模型都能很好地再现C结果使用我们对单身和一对的最佳估计。结合EC,C和湿度计的测量结果进一步评估了EBC的质量吸收截面(MAC)与其来源之间的相关性。结果表明,在880 nm处,MAC的MAC与由交通或燃木排放引起的MAC值无显着差异。还使用EC ∕ EC作为参考,并为每个单独的数据点计算了一个先验选择的常数。没有观察到站与站之间或季节与季节之间的明显差异,但是和值是相互依赖的。例如,增加0.1导致减少0.1。不同和组合的拟合残差取决于EC ∕ EC,因此无法使用其他对在整个EC ∕ EC范围内获得良好的一致性。可能分别有= and0.8、1.0和= 1.8和1.6的附加组合,但仅对于∕〜40和85%之间的EC ∕ EC。将先前在文学中使用的值(例如〜2或任何与= 1.1的组合)应用于我们的数据集会导致大残差。因此,当没有或只有有限的附加信息(如C测量值)可用时,我们建议在以后的研究中使用此处获得的最佳组合(= 0.9和= 1.68)。但是,这些结果是在受黑碳(BC)影响的地点获得的,这些地点主要来自交通流量,包括现代车队和居民木材燃烧,且燃烧效率受到严格限制。对于世界上燃烧条件不同的地区,额外的卑诗省来源或使用的燃料,需要进行进一步的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号