首页> 外文OA文献 >Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty
【2h】

Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty

机译:在不确定性下乙烯植物中蒸汽系统的数据驱动鲁棒优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of the process demands cause great difficulties to traditional mathematical programming methods, which could result in suboptimal or infeasible solution. The growing data-driven optimization approaches offer new techniques to eliminate uncertainty in the process system engineering community. A data-driven robust optimization (DDRO) methodology is proposed to deal with uncertainty in the optimization of steam system in an ethylene plant. A hybrid model of extraction−exhausting steam turbine is developed, and its coefficients are considered as uncertain parameters. A deterministic mixed integer linear programming model of the steam system is formulated based on the model of the components to minimize the operating cost of the ethylene plant. The uncertain parameter set of the proposed model is derived from the historical data, and the Dirichlet process mixture model is employed to capture the features for the construction of the uncertainty set. In combination with the derived uncertainty set, a data-driven conic quadratic mixed-integer programming model is reformulated for the optimization of the steam system under uncertainty. An actual case study is utilized to validate the performance of the proposed DDRO method.
机译:在乙烯厂,蒸汽系统为压缩机和泵提供轴电源,并加热工艺流。蒸汽系统的建模和优化是一种强大的工具,可以为乙烯厂带来益处和节省能源。然而,设备效率的不确定性和过程要求的波动对传统的数学规划方法造成巨大困难,这可能导致次优或不可行的解决方案。日益增长的数据驱动优化方法提供了消除过程系统工程界中不确定性的新技术。提出了一种数据驱动的鲁棒优化(DDRO)方法,以处理乙烯植物中蒸汽系统优化的不确定性。开发了一种提取 - 汽轮机的混合模型,其系数被认为是不确定的参数。基于组件的模型配制了蒸汽系统的确定性混合整数线性编程模型,以最小化乙烯植物的运行成本。所提出的模型的不确定参数集源自历史数据,并且采用Dirichlet过程混合模型来捕获用于构建不确定性集的特征。结合衍生的不确定性集合,数据驱动的圆锥二次混合整数编程模型是为了在不确定性下进行蒸汽系统的优化。实际的案例研究用于验证所提出的DDRO方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号