首页> 外文OA文献 >Measurability of functions with approximately continuous vertical sections and measurable horizontal sections
【2h】

Measurability of functions with approximately continuous vertical sections and measurable horizontal sections

机译:具有近似连续垂直部分和可测量水平部分的功能的可测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A function f:R -> R is approximately continuous iff it is continuous in thedensity topology, i.e., for any ordinary open set U the set E=f^{-1}(U) ismeasurable and has Lebesgue density one at each of its points. Denjoy provedthat approximately continuous functions are Baire 1., i.e., pointwise For anyf:R^2 -> R define f_x(y) = f^y(x) = f(x,y). A function f:R^2 -> R is separatelycontinuous if f_x and f^y are continuous for every x,y in R. Lebesgue in hisfirst paper proved that any separately continuous function is Baire 1.Sierpinski showed that there exists a nonmeasurable f:R^2 -> R which isseparately Baire 1. In this paper we prove: Thm 1. Let f:R^2 -> R be such that f_x is approximately continuous and f^y isBaire 1 for every x,y in R. Then f is Baire 2. Thm 2. Suppose there exists a real-valued measurable cardinal. Then for anyfunction f:R^2 -> R and countable ordinal i, if f_x is approximately continuousand f^y is Baire i for every x,y in R, then f is Baire i+1 as a function of twovariables. Thm 3. (i) Suppose that R can be covered by omega_1 closed null sets. Thenthere exists a nonmeasurable function f:R^2 -> R such that f_x is approximatelycontinuous and f^y is Baire 2 for every x,y in R. (ii) Suppose that R can becovered by omega_1 null sets. Then there exists a nonmeasurable function f:R^2-> R such that f_x is approximately continuous and f^y is Baire 3 for every x,yin R. Thm 4. In the random real model for any function f:R^2 -> R if f_x isapproximately continuous and f^y is measurable for every x,y in R, then f ismeasurable as a function of two variables.
机译:函数f:R-> R是近似连续的,前提是它在密度拓扑中是连续的,即,对于任何普通的开放集合U,集合E = f ^ {-1}(U)是可测量的,并且Lebesgue密度在其每个点处为1点。 Denjoy证明了近似连续的函数是Baire 1.,即逐点对于anyf:R ^ 2-> R定义f_x(y)= f ^ y(x)= f(x,y)。如果f_x和f ^ y对于R中的每个x,y是连续的,则函数f:R ^ 2-> R是分别连续的。Lebesgue在他的第一篇论文中证明,任何单独的连续函数都是Baire1。Sierpinski表明存在不可测量的f :R ^ 2-> R,其分别为Baire1。在本文中,我们证明:Thm 1.令f:R ^ 2-> R使得f_x近似连续,并且f ^ y是R中每x,y的f ^ y是Baire 1 。那么f是Baire 2. Thm 2.假设存在一个实值可测量基数。然后对于任何函数f:R ^ 2-> R和可数序数i,如果f_x近似连续并且f ^ y是R中每个x,y的Baire i,则f是两个变量的函数的Baire i + 1。 Thm3。(i)假设R可以被omega_1封闭的空集覆盖。然后存在不可测量的函数f:R ^ 2-> R,使得f_x近似连续,并且对于R中的每个x,y,f ^ y是Baire2。(ii)假设R可以被omega_1空集覆盖。然后存在一个不可测量的函数f:R ^ 2-> R,使得f_x近似连续,并且对于每个x,yin R,f ^ y是Baire3。Thm4。在任何函数f:R ^ 2的随机实模型中-> R,如果f_x近似连续,并且R中每个x,y的f ^ y是可测量的,则f可作为两个变量的函数来测量。

著录项

  • 作者

    M. Laczkovich; Arnold Miller;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号