首页> 外文OA文献 >GridSample: an R package to generate household survey primary sampling units (PSUs) from gridded population data
【2h】

GridSample: an R package to generate household survey primary sampling units (PSUs) from gridded population data

机译:gridsample:一个r包从网格种群数据生成家庭调查主要采样单位(PSU)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Household survey data are collected by governments, international organizations, and companies to prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, census data are often outdated or inaccurate. This paper describes how gridded population data might instead be used as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex household surveys with gridded population data. With a gridded population dataset and geographic boundary of the study area, GridSample allows a two-step process to sample “seed” cells with probability proportionate to estimated population size, then “grows” PSUs until a minimum population is achieved in each PSU. The algorithm permits stratification and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results. Results We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda’s 30 districts, and oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU population of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while GridSample reallocated rural-to-urban PSUs across all districts. Conclusions Gridded population sampling is a promising alternative to typical census-based sampling when census data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-probability sampling (e.g. random-walk, “spin-the-pen”), and random sampling of households. Gridded population sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population sampling. The GridSample R algorithm can be used to forward this research agenda.
机译:摘要背景住户调查数据是由各国政府,国际组织和企业优先考虑的政策和分配数十亿美元的收集。调查通常从最近的人口普查数据中选择;然而,普查数据往往是过时的或不准确的。本文描述了如何人口网格数据可能替代地被用作一个样本帧,并介绍了将R GridSample算法用于与网格人口数据复杂家庭调查选择主抽样单位(PSU)。与网格人口数据集和研究区域的地理边界,GridSample允许两个步骤的过程来样品“种子”细胞的概率成比例的估计的人口尺寸,然后“生长”的PSU直到最小群在每个PSU实现。该算法允许分层和城市或农村地区的过采样。网格单元的大致均匀的尺寸和形状允许空间重复取样,不可能在典型的调查,有可能改善与调查结果小区域的估计。结果我们通过采样WorldPop 2010年联合国调整百米×百米网格化人口的数据集,卢旺达的30个地区分层,并且在城市地区进行过采样复制在GridSample 2010年卢旺达人口与健康调查(DHS)。 2010年卢旺达国土安全部有79个城市的事业单位,413个农村事业单位,拥有610人的平均PSU人口。在GridSample的等效样品有75个城市的事业单位,405个农村事业单位,以及612人的中位数PSU人口。 PSU的数量不同,因为美国国土安全部加入城市事业单位从具体地区而GridSample重新分配在所有地区的农村到城市的事业单位。网格化人口抽样结论是一个很有前途的替代典型的基于普查的抽样时的人口普查数据被适度过时或不准确。四种方法实施已经尝试:(1)使用由GridSample产生网格PSU边界,(2)利用卫星图像手动分段网格PSU,(3)非概率抽样(例如随机行走,“自旋的笔” ),和家庭的随机抽样。网格化人口抽样正处于起步阶段,并需要进一步研究,以评估网格人口抽样的准确性和可行性。该GridSample [R算法可以用来转发此研究议程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号