首页> 外文OA文献 >Phosphoregulation of somatodendritic voltage-gated potassium channels by pituitary adenylate cyclase-activating polypeptide
【2h】

Phosphoregulation of somatodendritic voltage-gated potassium channels by pituitary adenylate cyclase-activating polypeptide

机译:垂体腺苷酸环酶活性多肽磷酸阳素型电压门控钾通道的磷测温

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts various neuromodulatory functions in mammalian brain. Enhancement of synaptic activity, mediation of chronic inflammatory and neuropathic pain, and neuroprotection in cerebral ischemia reperfusion injury constitute some of the exemplary functions of PACAP. However, it remains unclear whether PACAP signaling can directly influence the function of critical voltage-gated ion channels, which could profoundly alter the excitability of neurons. Voltage-gated K+ (Kv) channels are critical regulators of neuronal excitability. The major Kv channel in the dendrites of mammalian neurons, Kv4.2, contributes most of the fast-activating and rapidly-inactivating K+ currents (IA), and is a key regulator of dendritic excitability, as well as modulation of synaptic inputs. In addition, the major somatic Kv channel Kv2.1 that contributes the bulk of slow-activating and non-inactivating K+ currents (IK), acts as an integrator of neuronal inputs and limits high frequency firing in neurons. As such, it provides homeostatic control of excitability under hyperexcitable and ischemic conditions. Both these Kv channels are known to undergo extensive post-translational modifications mainly by phosphorylation that alters their localization and biophysical properties. PACAP can activate its specific receptor PAC1 that could result in downstream activation of various kinases including protein kinase A (PKA), protein kinase C (PKC), extracellular signal-regulated kinase (ERK1/2). Therefore, I hypothesize that PACAP activation of PAC1 receptor can cause phosphorylation-dependent modulation of somatodendritic Kv4.2 and Kv2.1 channels, resulting in altered neuronal excitability.First, I identified the various PAC1 receptor isoforms expressed in rat and mouse brain and elucidated that their activation by PACAP caused downstream PKA- and PKC-dependent signaling pathways, ultimately converging on ERK1/2 activation. Further, PACAP caused reduction in IA that was mediated by phosphorylation-dependent internalization of the channel protein from the plasma membrane. These effects were mediated by direct phosphorylation of the channel by ERK1/2 at the cytoplasmic C-terminus of the channel. Although PACAP did not significantly alter the voltage-dependence of Kv4.2 channel activation/inactivation, I observed distinct ERK1/2- and PKA-dependent changes in the extent and kinetics of channel inactivation.Next, I observed that PACAP induced dephosphorylation of the Kv2.1 channel in CHN that was mediated by protein phosphatase 2A (PP2A), and was dependent on PKC activation but was independent of the effects of PACAP on Kv4.2 currents. Rapid but reversible dephosphorylation of Kv2.1 was also observed following induction of ischemia in neurons by oxygen-glucose deprivation (OGD). PACAP prolonged the dephosphorylation of Kv2.1 following in vitro ischemia-reperfusion and also reduced neuronal death. My results therefore suggest a novel PACAP/PAC1-PKC-PP2A-Kv2.1 signaling axis that provides neuroprotection during ischemia reperfusion injury.In summary, my results suggest that PACAP can induce direct phosphorylation-dependent modulation of the Kv4.2 and Kv2.1 channel localization and function in mammalian brain neurons. The effect of PACAP on these two critical somatodendritic ion channels occurs via distinct signaling - convergent PKA-PKC-ERK-mediated phosphorylation of Kv4.2 channel, and PKC-PP2A-mediated dephosphorylation of the Kv2.1 channel. Such distinct modulations of these ion channels are presumably responsible for the multifarious roles of PACAP in the central nervous system.
机译:内源性神经肽垂体腺苷酸环化酶激活多肽(PACAP)在哺乳动物脑中发挥多种神经调节功能。突触活性,慢性炎性和神经性疼痛调解,并在脑缺血再灌注损伤的神经保护作用的增强构成一些的PACAP的示例性功能。然而,PACAP信令中是否可以直接影响临界电压门控离子通道,这可能深刻地改变神经元的兴奋的功能尚不清楚。电压门控的K +(KV)通道是神经元兴奋性的关键调节剂。在哺乳动物的神经元的树突的主要Kv通道,KV4.2,有助于大部分快速激活和快速失活K +电流(IA),和是树突兴奋的关键调节剂,以及的突触输入调制。此外,有助于本体缓慢活化和非失活K +电流(IK)的,主要的体细胞Kv通道Kv2.1作为神经元的输入和限制在神经元中的高频发射的积分器。因此,它提供了过度兴奋和缺血性条件下的兴奋性稳态控制。这两个Kv通道被称为主要是通过磷酸化进行大量的翻译后修饰改变它们的定位和生物物理特性。 PACAP可以激活其特异性受体PAC1可能导致各种激酶,包括蛋白的下游活化激酶A(PKA),蛋白激酶C(PKC),细胞外信号调节激酶(ERK1 / 2)。因此,我推测PAC1受体的活化PACAP可引起体树突KV4.2和Kv2.1通道的磷酸化依赖型调制,导致改变的神经元excitability.First,我确定在大鼠和小鼠的脑中表达和阐明的各种PAC1受体亚型它们的激活由PACAP引起下游PKA-和PKC依赖的信号传导途径,最终收敛于ERK1 / 2的活化。此外,PACAP引起IA减少,是由从质膜的通道蛋白的磷酸化依赖性内在化介导的。这些作用被在信道的细胞质C-末端的通道通过ERK1 / 2的磷酸化直接介导。虽然PACAP没有显著改变KV4.2通道活化/失活的电压依赖性,我观察不同ERK1 / 2-和PKA依赖性的程度和信道inactivation.Next的动力学变化,我观察的该PACAP诱导的去磷酸化在CHN Kv2.1通道,是由蛋白磷酸酶2A(PP2A)介导的,并且是依赖于PKC活化但独立的PACAP对KV4.2电流的影响。快速但Kv2.1的可逆去磷酸化是下列中由缺氧缺糖(OGD)神经元局部缺血诱导也观察到。 PACAP延长Kv2.1体外缺血再灌注后的去磷酸化和也减少神经元死亡。因此,我的结果表明一个新的PACAP / PAC1-PKC-PP2A-Kv2.1信令轴线缺血再灌注injury.In摘要期间提供神经保护,我的结果表明,PACAP可以诱导KV4.2和KV2的直接磷酸化依赖性调制。 1个通道定位和功能在哺乳动物脑的神经元。 KV4.2通道的会聚PKA-PKC-ERK介导的磷酸化,和Kv2.1通道的PKC-PP2A介导的去磷酸化 - PACAP对这两个关键体树突离子通道的作用经由不同的信号发生。这些离子通道的这种独特的调制对于PACAP在中枢神经系统中的繁杂的角色可能负责。

著录项

  • 作者

    Raeesa Prashant Gupte;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号