首页> 外文OA文献 >Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle
【2h】

Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle

机译:无人机地面车辆的环境感知和传感器数据融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unmanned Ground Vehicles (UGVs) that can drive autonomously in cross-country environment have received a good deal of attention in recent years. They must have the ability to determine whether the current terrain is traversable or not by using onboard sensors. This paper explores new methods related to environment perception based on computer image processing, pattern recognition, multisensors data fusion, and multidisciplinary theory. Kalman filter is used for low-level fusion of physical level, thus using the D-S evidence theory for high-level data fusion. Probability Test and Gaussian Mixture Model are proposed to obtain the traversable region in the forward-facing camera view for UGV. One feature set including color and texture information is extracted from areas of interest and combined with a classifier approach to resolve two types of terrain (traversable or not). Also, three-dimension data are employed; the feature set contains components such as distance contrast of three-dimension data, edge chain-code curvature of camera image, and covariance matrix based on the principal component method. This paper puts forward one new method that is suitable for distributing basic probability assignment (BPA), based on which D-S theory of evidence is employed to integrate sensors information and recognize the obstacle. The subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification are achieved by using the D-S theory of evidence. Control on motion behavior or autonomous navigation for UGV is based on the method, which is necessary for UGV high speed driving in cross-country environment. The experiment results have demonstrated the viability of the new method.
机译:近年来,可以在越野环境中自主推动的无人机地面车辆(UGV)已经收到了很多关注。它们必须能够确定当前地形是否是通过使用船上传感器而遍历的。本文探讨了基于计算机图像处理,模式识别,多传感器数据融合和多学科理论的环境感知相关的新方法。卡尔曼滤波器用于物理级别的低级融合,从而使用D-S证据理论进行高级数据融合。提出了概率测试和高斯混合模型,以在前进的相机视图中获得可遍历的区域。包括颜色和纹理信息的一个功能集是从感兴趣的区域提取,并与分类器方法组合以解决两种类型的地形(遍历或不)。此外,采用了三维数据;该功能集包含组件,例如三维数据的距离对比度,相机图像的边缘链码曲率,以及基于主成分方法的协方差矩阵。本文提出了一种适用于分发基本概率分配(BPA)的一种新方法,基于哪种新的证据理论用于集成传感器信息并识别障碍物。应用了使用模糊插值获得的下属来计算基本概率分配。假设从属区别等于公式中的相关系数。通过使用D-S证据理论来实现对象识别的更准确的结果。 UGV的运动行为或自主导航的控制是基于该方法,这对于越野环境中的UGV高速驾驶是必要的。实验结果表明了新方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号