首页> 外文OA文献 >Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis
【2h】

Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis

机译:MRI胶质瘤分子特征分类的机器学习算法的准确性:系统文献综述与荟萃分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Treatment planning and prognosis in glioma treatment are based on the classification into low- and high-grade oligodendroglioma or astrocytoma, which is mainly based on molecular characteristics (IDH1/2- and 1p/19q codeletion status). It would be of great value if this classification could be made reliably before surgery, without biopsy. Machine learning algorithms (MLAs) could play a role in achieving this by enabling glioma characterization on magnetic resonance imaging (MRI) data without invasive tissue sampling. The aim of this study is to provide a performance evaluation and meta-analysis of various MLAs for glioma characterization. Systematic literature search and meta-analysis were performed on the aggregated data, after which subgroup analyses for several target conditions were conducted. This study is registered with PROSPERO, CRD42020191033. We identified 724 studies; 60 and 17 studies were eligible to be included in the systematic review and meta-analysis, respectively. Meta-analysis showed excellent accuracy for all subgroups, with the classification of 1p/19q codeletion status scoring significantly poorer than other subgroups (AUC: 0.748, p = 0.132). There was considerable heterogeneity among some of the included studies. Although promising results were found with regard to the ability of MLA-tools to be used for the non-invasive classification of gliomas, large-scale, prospective trials with external validation are warranted in the future.
机译:胶质瘤治疗中的治疗计划和预后基于分类为低级和高级寡替偶像瘤或星形细胞瘤,其主要基于分子特性(IDH1 / 2-和1P / 19Q Codeletion状态)。如果可以在手术前可靠,没有活组织检查,如果可以可靠地进行这种分类,那将是具有重要价值。机器学习算法(MLAS)可以通过在没有侵入式组织采样的情况下启用磁共振成像(MRI)数据来实现胶质瘤表征在实现这方面的作用。本研究的目的是提供对胶质瘤表征的各种MLA的性能评估和荟萃分析。在聚合数据上进行系统文献搜索和元分析,之后进行几个目标条件的亚组分析。本研究以Prospero,CRD42020191033注册。我们确定了724项研究; 60和17项研究有资格分别包含在系统审查和荟萃分析中。 Meta分析表明所有亚组的精度优异,分类为1P / 19Q Comethion状态评分比其他亚组显着差(AUC:0.748,P = 0.132)。其中一些研究中存在相当大的异质性。尽管未来,但在未来的胶质瘤的非侵入性分类的情况下发现了有希望的结果,但将来有权进行大规模的前瞻性试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号