首页> 外文OA文献 >A New Deep Learning Network for Automatic Bridge Detection from SAR Images Based on Balanced and Attention Mechanism
【2h】

A New Deep Learning Network for Automatic Bridge Detection from SAR Images Based on Balanced and Attention Mechanism

机译:基于平衡和注意机制的SAR图像自动桥梁自动桥梁检测的新深度学习网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bridge detection from Synthetic Aperture Radar (SAR) images has very important strategic significance and practical value, but there are still many challenges in end-to-end bridge detection. In this paper, a new deep learning-based network is proposed to identify bridges from SAR images, namely, multi-resolution attention and balance network (MABN). It mainly includes three parts, the attention and balanced feature pyramid (ABFP) network, the region proposal network (RPN), and the classification and regression. First, the ABFP network extracts various features from SAR images, which integrates the ResNeXt backbone network, balanced feature pyramid, and the attention mechanism. Second, extracted features are used by RPN to generate candidate boxes of different resolutions and fused. Furthermore, the candidate boxes are combined with the features extracted by the ABFP network through the region of interest (ROI) pooling strategy. Finally, the detection results of the bridges are produced by the classification and regression module. In addition, intersection over union (IOU) balanced sampling and balanced L1 loss functions are introduced for optimal training of the classification and regression network. In the experiment, TerraSAR data with 3-m resolution and Gaofen-3 data with 1-m resolution are used, and the results are compared with faster R-CNN and SSD. The proposed network has achieved the highest detection precision (P) and average precision (AP) among the three networks, as 0.877 and 0.896, respectively, with the recall rate (RR) as 0.917. Compared with the other two networks, the false alarm targets and missed targets of the proposed network in this paper are greatly reduced, so the precision is greatly improved.
机译:从合成孔径雷达(SAR)图像大桥检测具有非常重要的战略意义和实用价值,但仍存在终端到终端的桥梁检测许多挑战。在本文中,一个新的深学习型网络,提出了从SAR图像,即,多分辨率的关注和平衡网络(MABN)确定桥梁。它主要包括三个部分,注意力和平衡功能金字塔(ABFP)网络,该地区提议网络(RPN),以及分类和回归。首先,ABFP网络提取物合成孔径雷达图像,它集成了ResNeXt骨干网,平衡功能的金字塔,和注意机制的各种特征。其次,提取出的特征被用来通过RPN产生不同分辨率和稠合的候选框。此外,候选框相结合,与合并策略通过关注区域(ROI)的区域由ABFP网络中提取的特征。最后,桥的检测结果通过分类和回归模块产生。此外,交叉点在接头(IOU)平衡的采样和平衡L1损失函数引入用于分类和回归网络的最佳训练。在实验中,用3-m的分辨率,并用1米分辨率Gaofen-3数据的TerraSAR数据被使用,并且将结果与更快的R-CNN和SSD相比。所提出的网络已经实现了最高的检测精度(P)和平均精度(AP)的三个网络中,分别作为0.877 0.896和,与查全率(RR)为0.917。与其他两个网络相比,假警报的目标和在本文所提出的网络错失目标被大大降低,使精度大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号