首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
【24h】

Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

机译:基于深度学习的特征学习和变化特征分类用于SAR图像中的三重变化检测

获取原文
获取原文并翻译 | 示例

摘要

Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
机译:三元变化检测旨在检测变化并将变化分为正向变化和负向变化。这对时空合成孔径雷达图像的联合解释具有重要意义。在这项研究中,将稀疏自动编码器,卷积神经网络(CNN)和无监督聚类相结合来解决三元变化检测问题,而无需任何监督。首先,稀疏自动编码器用于将对数比差图像转换为合适的特征空间,以提取关键变化并抑制离群值和噪声。然后将学习到的特征聚类为三类,作为训练CNN模型作为变化特征分类器的伪标签。 CNN的可靠训练样本是从稀疏自动编码器根据某些选择规则学习的特征图中选择的。具有训练样本和相应的伪标记,可以通过使用具有随机梯度下降的反向传播来训练CNN模型。在其训练过程中,CNN被驱动学习变化的概念,并且建立了更强大的模型来区分不同类型的变化。与传统方法不同,该框架结合了稀疏自动编码器和CNN的优点,以学习更健壮的差异表示和用于三元变化检测的变化概念。在真实数据集上的实验结果验证了所提出框架的有效性和优越性。 (C)2017国际摄影测量与遥感学会(ISPRS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号